硕士研究生学位论文

题目：基于实时全局视觉的足球机器人比赛数据分析系统

姓名：林飞
学号：10180032
院系：信息科学技术学院智能科学系
专业：信号与信息处理
研究方向：机器感知与智能机器人

导师：刘宏

查红彬

二零零四年五月
近年来，足球机器人比赛已成为多智能体系统和分布式人工智能研究的新热点。比赛分析是足球机器人策略改进的基础。但目前针对实际比赛的分析还处于通过赛后观看录像进行主观评价的阶段，缺乏以现场数据为基础的定量分析。因此，我们开发了一个基于实时全局视觉的足球机器人比赛数据分析系统。在对全局视觉进行改进的基础上得到了更准确的比赛数据，并利用四个约束条件对比赛数据进行预处理。在此基础上实现了一个可视化的比赛数据分析系统。

为得到更好的比赛数据，通过颜色模型的转换，机器人运动区域和方向的预测，处理区域的选择以及局部搜索和全局搜索相结合等方法对全局视觉系统进行了改进，提高了视觉系统的稳定性和准确性，减少了赛前的准备时间。然后利用线速度约束、角速度约束、轨迹平滑性约束和重叠性约束等四个约束条件对比赛数据进行预处理，很大程度上消除了比赛数据中的无效数据。运动死锁是机器人比赛中常见的问题。解决该问题有利于提高比赛的智能性和观赏性，保护硬件并节省比赛时间。为此，我们利用分析系统对比赛中的死锁场景进行检测，并在此基础上实现了一个解决运动死锁问题的模糊控制器。通过实验验证了该控制器的有效性。

在改进后的比赛数据基础上实现了以下数据分析功能：机器人运动性能分析，技战术自动统计和基于内容的比赛视频检索。基于内容的比赛视频检索实现了射门进球和用户自定义检索功能。其中，自定义检索为用户检索感兴趣的场景提供了直观灵活的手段。实验表明，本文提出的足球机器人比赛数据分析系统对足球机器人比赛可以进行离线分析和在线分析，具有良好的应用前景。

关键词：足球机器人，全局视觉，模糊控制，视频检索
Robot soccer games are very popular platforms for researches of multi-agent system and distributed artificial intelligence recently. Competition analysis is the basic way to improve the strategy system of robot. But until now, competitions are analysed by researchers subjectively through replaying the video after competitions, and meanwhile, they are always lack of analyzing the competition quantitatively. Therefore, the main work of this thesis is to develop a robot soccer competition data analysis system based on real-time global vision. Competition data is obtained from the improved global vision system and then be updated by four restriction rules. Through the improved and visible data, some advanced analysis functions are implemented.

To get more accurate competition data, recognition results of the global vision system are improved by the following methods: color model transformation, predicting the motion of objects, selecting process field and combinating the local search and the global search. As a result, the stability and accuracy of vision system are improved, the preparation time for competition is also reduced.

Motion deadlocks are very popular problems in robot soccer games. These problems should be solved for the following four reasons. The first reason is to make the system more intelligent. The second reason is to give the audience a more fluent game. The third reason is to protect robot hardware and the last is to reduce the competition time. A two-layered fuzzy controller is constructed to make online decisions when motion deadlocks occur. Simulation experiments show the efficiency of the fuzzy controller.

Through the improved competition data, several analysis functions are implemented as follows: motion performance analysis of robots, auto-stat. of tactics and content based competition video retrieval. Content based competition video retrieval can retrieve the scenes of shooting, goal and user defined scenes. User defined method provides an intuitionistic and flexible way for retrieving the scenes user interested in.

Experiments show that the soccer robot competition data analysis system can analyse the competition, whatever online or offline and has a bright future in application prospects.

Keywords: Soccer Robot, Global Vision, Fuzzy Control, Video Retrieval
Abstract.. II

1.1 章节标题 .. 1
 1.1.1 小节标题 ... 2
 1.1.2 小节标题 ... 3
 1.1.3 小节标题 ... 4

1.2 章节标题 .. 5
 1.2.1 小节标题 ... 8

1.3 章节标题 .. 11
 1.3.1 小节标题 .. 12

2.1 章节标题 .. 13

2.2 章节标题 .. 14

2.3 章节标题 .. 15

2.4 章节标题 .. 17

2.5 章节标题 .. 24

2.6 章节标题 .. 25

3.1 章节标题 .. 25

3.2 章节标题 .. 27

3.3 章节标题 .. 30

3.4 章节标题 .. 31

3.5 章节标题 .. 39

4.1 章节标题 .. 40

4.2 章节标题 .. 42

4.3 章节标题 .. 42

4.4 章节标题 .. 45

4.4.1 小节标题 ... 46

4.4.2 小节标题 ... 46
4.4.3 模糊器和解模糊器 .. 47
4.4.4 解决运动死锁问题的模糊控制系统的构成 .. 48
4.5 小结 ... 54

5.1 机器人运动性能分析 ... 55
5.2 模糊解锁的实验 ... 56
5.3 技战术自动统计功能 ... 63
5.4 基于内容的比赛视频检索 .. 64
5.5 小结 ... 67

5.6 小结 ... 68

致谢 .. 69

参考文献 .. 70
图表目录

表 1-1 RoboCup 和 FIRA 的比较 ... 1
表 1-2 RoboCup2003 和 FIRA ... 2
表 1-3 FIRA 2003 ... 2
表 1-4 FIRA ... 4
表 1-5 FIRA MiroSot 3vs3 ... 9
表 1-6 FIRA MiroSot 3vs3 ... 13
表 1-7 FIRA MiroSot 3vs3 ... 14
表 1-8 FIRA MiroSot 3vs3 ... 15
表 1-9 FIRA MiroSot 3vs3 ... 15
表 1-10 FIRA MiroSot 3vs3 ... 16
表 1-11 FIRA MiroSot 3vs3 ... 18
表 1-12 FIRA MiroSot 3vs3 ... 18
表 1-13 FIRA MiroSot 3vs3 ... 18
表 1-14 FIRA MiroSot 3vs3 ... 19
表 1-15 FIRA MiroSot 3vs3 ... 20
表 1-16 FIRA MiroSot 3vs3 ... 20
表 1-17 FIRA MiroSot 3vs3 ... 22
表 1-18 FIRA MiroSot 3vs3 ... 23
表 1-19 FIRA MiroSot 3vs3 ... 24
表 1-20 FIRA MiroSot 3vs3 ... 26
表 1-21 FIRA MiroSot 3vs3 ... 26
表 1-22 FIRA MiroSot 3vs3 ... 27
表 1-23 FIRA MiroSot 3vs3 ... 27
表 1-24 FIRA MiroSot 3vs3 ... 28
表 1-25 FIRA MiroSot 3vs3 ... 28
表 1-26 FIRA MiroSot 3vs3 ... 29
表 1-27 FIRA MiroSot 3vs3 ... 29
表 1-28 FIRA MiroSot 3vs3 ... 29
表 1-29 FIRA MiroSot 3vs3 ... 29
表 1-30 FIRA MiroSot 3vs3 ... 30
表 1-31 FIRA MiroSot 3vs3 ... 30
表 1-32 FIRA MiroSot 3vs3 ... 31
表 1-33 FIRA MiroSot 3vs3 ... 32
表 1-34 FIRA MiroSot 3vs3 ... 34
表 1-35 FIRA MiroSot 3vs3 ... 35
表 1-36 FIRA MiroSot 3vs3 ... 36
表 1-37 FIRA MiroSot 3vs3 ... 38
4-1 争球示例 1
4-2 争球示例 2
4-3 2号机器人死锁
4-4 1号机器人死锁
4-5 死锁时专家的决策过程
4-6 解决运动死锁问题的模糊控制器的构成
4-7 FLC 构成图
4-8 第一层控制器的变量
4-9 DistToBall, DistToOpp, DistToTeam 的成员函数
4-10 Out 的成员函数
4-11 第二层控制器的变量
4-12 Arb 和 Aro 的隶属度函数
4-13 Aot 的隶属度函数
4-14 Bally 的隶属度函数
4-15 Ballx 的隶属度函数
5-1a 校正前机器人的运动轨迹
5-1b 校正后机器人的运动轨迹
5-2a 校正前机器人的运动轨迹
5-2b 校正后机器人的运动轨迹
5-3 投票结果
5-4 不撤退
5-5 撤退后利于进攻
5-6 撤退后利于局面流畅
5-7 撤退后利于局面流畅
5-8a T 时刻发生死锁
5-8b 不解锁的场景
5-9a T 时刻发生死锁
5-9b 解锁后的场景
5-10a T 时刻发生死锁
5-10b 解锁后的场景
5-11a T 时刻发生死锁
5-11b 解锁后的场景
5-12 统计结果 1
5-13 统计结果 2
5-14a 射门场景
5-14b 视频中的对应场景
5-15a 进球场景
5-15b 视频中的对应场景
5-16a 仿真实验结果统计
5-16b 1
5-17a 自定义场景
5-17b 视频中的场景

<table>
<thead>
<tr>
<th>章节</th>
<th>图片或表格</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>争球示例 1</td>
</tr>
<tr>
<td>4-2</td>
<td>争球示例 2</td>
</tr>
<tr>
<td>4-3</td>
<td>2号机器人死锁</td>
</tr>
<tr>
<td>4-4</td>
<td>1号机器人死锁</td>
</tr>
<tr>
<td>4-5</td>
<td>死锁时专家的决策过程</td>
</tr>
<tr>
<td>4-6</td>
<td>解决运动死锁问题的模糊控制器的构成</td>
</tr>
<tr>
<td>4-7</td>
<td>FLC 构成图</td>
</tr>
<tr>
<td>4-8</td>
<td>第一层控制器的变量</td>
</tr>
<tr>
<td>4-9</td>
<td>DistToBall, DistToOpp, DistToTeam 的成员函数</td>
</tr>
<tr>
<td>4-10</td>
<td>Out 的成员函数</td>
</tr>
<tr>
<td>4-11</td>
<td>第二层控制器的变量</td>
</tr>
<tr>
<td>4-12</td>
<td>Arb 和 Aro 的隶属度函数</td>
</tr>
<tr>
<td>4-13</td>
<td>Aot 的隶属度函数</td>
</tr>
<tr>
<td>4-14</td>
<td>Bally 的隶属度函数</td>
</tr>
<tr>
<td>4-15</td>
<td>Ballx 的隶属度函数</td>
</tr>
<tr>
<td>5-1a</td>
<td>校正前机器人的运动轨迹</td>
</tr>
<tr>
<td>5-1b</td>
<td>校正后机器人的运动轨迹</td>
</tr>
<tr>
<td>5-2a</td>
<td>校正前机器人的运动轨迹</td>
</tr>
<tr>
<td>5-2b</td>
<td>校正后机器人的运动轨迹</td>
</tr>
<tr>
<td>5-3</td>
<td>投票结果</td>
</tr>
<tr>
<td>5-4</td>
<td>不撤退</td>
</tr>
<tr>
<td>5-5</td>
<td>撤退后利于进攻</td>
</tr>
<tr>
<td>5-6</td>
<td>撤退后利于局面流畅</td>
</tr>
<tr>
<td>5-7</td>
<td>撤退后利于局面流畅</td>
</tr>
<tr>
<td>5-8a</td>
<td>T 时刻发生死锁</td>
</tr>
<tr>
<td>5-8b</td>
<td>不解锁的场景</td>
</tr>
<tr>
<td>5-9a</td>
<td>T 时刻发生死锁</td>
</tr>
<tr>
<td>5-9b</td>
<td>解锁后的场景</td>
</tr>
<tr>
<td>5-10a</td>
<td>T 时刻发生死锁</td>
</tr>
<tr>
<td>5-10b</td>
<td>解锁后的场景</td>
</tr>
<tr>
<td>5-11a</td>
<td>T 时刻发生死锁</td>
</tr>
<tr>
<td>5-11b</td>
<td>解锁后的场景</td>
</tr>
<tr>
<td>5-12</td>
<td>统计结果 1</td>
</tr>
<tr>
<td>5-13</td>
<td>统计结果 2</td>
</tr>
<tr>
<td>5-14a</td>
<td>射门场景</td>
</tr>
<tr>
<td>5-14b</td>
<td>视频中的对应场景</td>
</tr>
<tr>
<td>5-15a</td>
<td>进球场景</td>
</tr>
<tr>
<td>5-15b</td>
<td>视频中的对应场景</td>
</tr>
<tr>
<td>5-16a</td>
<td>仿真实验结果统计</td>
</tr>
<tr>
<td>5-16b</td>
<td>1</td>
</tr>
<tr>
<td>5-17a</td>
<td>自定义场景</td>
</tr>
<tr>
<td>5-17b</td>
<td>视频中的场景</td>
</tr>
</tbody>
</table>
1.1 机器人足球比赛简介

机器人足球赛现在已经成为机器人和人工智能领域的研究热点之一，是在动态不确定环境下对人工智能的考验，是以体育竞赛为载体的高科技对抗，是培养信息自动化领域科技人才的重要手段，同时也是展示高科技水平的窗口和促进科技成果实用化和产业化的有效途径。机器人足球比赛的设想是由加拿大不列颠哥伦比亚大学的 Alan Mackworth 教授于 1992 年在《On Seeing Robots》一书中提出的，其主要思想是为了促进分布式人工智能研究与教育的发展提供一个标准任务。机器人足球赛使得研究人员在该平台中研究各种相关技术，从而有效促进各相关研究领域的发展。发展到现在，这些领域已经涉及到机器人学、机电一体化技术、多智能体系统、通讯与计算机技术、视觉与传感器技术、智能控制与决策等。

目前，有关机器人足球比赛的国际组织有两个：RoboCup 联合会和 FIRA 组织。这两个组织分别组办不同的世界性大赛如图 1-1 和 1-2 所示。他们之间的不同点可简单用表 1-1 说明。

<table>
<thead>
<tr>
<th>RoboCup</th>
<th>FIRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>创立</td>
<td>1997 年</td>
</tr>
<tr>
<td>规模</td>
<td>50 多个国家</td>
</tr>
<tr>
<td>分布</td>
<td>日本欧洲美国等</td>
</tr>
<tr>
<td>特点</td>
<td>分布式</td>
</tr>
<tr>
<td>种类</td>
<td>仿真(11:11), 小型组(5:5,11:11)</td>
</tr>
<tr>
<td>遥控跟踪等</td>
<td></td>
</tr>
</tbody>
</table>

表 1-1 Comparison between RoboCup and FIRA
1.1.1 RoboCup

RoboCup（Robot World Cup），以Multi-Agent System（MAS）和Distributed Artificial Intelligence（DAI）为主要研究背景，主要目的就是通过提供一个标准的易于评价的比赛平台，促进DAI与MAS的研究与发展。

<table>
<thead>
<tr>
<th>名称</th>
<th>日期</th>
<th>主办国</th>
<th>城市</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoboCup 1997</td>
<td>August 23-29</td>
<td>Japan</td>
<td>Nagoya</td>
</tr>
<tr>
<td>RoboCup 1998</td>
<td>July 2-9</td>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>RoboCup 1999</td>
<td>Jul.27-Aug.6</td>
<td>Sweden</td>
<td>Stockholm</td>
</tr>
<tr>
<td>RoboCup 2000</td>
<td>Aug.26-Sept.3</td>
<td>Australia</td>
<td>Melbourne</td>
</tr>
<tr>
<td>RoboCup 2001</td>
<td>Aug.2-10</td>
<td>America</td>
<td>Seattle</td>
</tr>
<tr>
<td>RoboCup 2002</td>
<td>Jun.19-25</td>
<td>Japan</td>
<td>Fukuoka</td>
</tr>
<tr>
<td>RoboCup 2003</td>
<td>Jul.2-11</td>
<td>Italia</td>
<td>Padova</td>
</tr>
<tr>
<td>RoboCup 2004</td>
<td>Jun.27-Jul.5</td>
<td>Portugal</td>
<td>Lisbon</td>
</tr>
</tbody>
</table>

RoboCup比赛项目在1997年刚开始第一届比赛时只有小型组中型组和仿真组比赛，1999年时增加了索尼有腿机器人赛，2001年增加了救援仿真比赛和救援机器人赛，2002年增加了更多的项目包括四腿机器人赛、类人机器人赛、机器人挑战赛，其中类人机器人赛包括下面4个项目：行走H-40、射门H-80、自由风格赛。机器人挑战赛包括足球挑战赛和舞蹈挑战赛。2003年仿真组增加了几项比赛如在线教练赛等，机器人挑战赛也增加了几个项目如救援挑战赛等。
可以看出RoboCup比赛的智能化程度越来越高，但是要能够完成到2050年时由全自主机器人组成的足球队战胜人类足球队的目标，面临着诸如必须要使机器人具备人的体态、体感、体能、技能以及感知能力的问题，而这涉及生态、材料、能源、传感技术等其他学科。因此不难看出发展RoboCup还需要创新的内容非常多，面临的困难也还很多，这不仅要求在单个领域内取得大的突破，还要求在各个学科之间要进行更好的交叉与融合。

1.1.2 FIRA

FIRA（Federation of International Robo-tosoccer Association），FIRA比赛最早由韩国高等技术研究院(KAIST)的金钟焕(Jong-Hwan Kim)于1995年提出，于次年在韩国大田(Daejeon)举办第一届国际比赛。

<table>
<thead>
<tr>
<th>名称</th>
<th>日期</th>
<th>主办国</th>
<th>城市</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiroSot 1996</td>
<td>Nov.9-12</td>
<td>Korea</td>
<td>Daejeon</td>
</tr>
<tr>
<td>MiroSot 1997</td>
<td>Jun.1-5</td>
<td>Korea</td>
<td>Daejeon</td>
</tr>
<tr>
<td>1998 Fira Cup</td>
<td>Jun.29-Jul.3</td>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>1999 FIRA Cup</td>
<td>Aug.4-8</td>
<td>Brazil</td>
<td>Campina</td>
</tr>
<tr>
<td>2000 FIRA Cup</td>
<td>Sept.18-24</td>
<td>Australia</td>
<td>Rockhampton</td>
</tr>
<tr>
<td>2001 FIRA Cup</td>
<td>Aug.1-5</td>
<td>China</td>
<td>Beijing</td>
</tr>
<tr>
<td>2002 FIRA Cup</td>
<td>May.23-29</td>
<td>Korea</td>
<td>Busan</td>
</tr>
<tr>
<td>2003 FIRA Cup</td>
<td>Sept.27-Oct.3</td>
<td>Austria</td>
<td>Vienna</td>
</tr>
<tr>
<td>2004 FIRA Cup</td>
<td>Oct.27-31</td>
<td>Korea</td>
<td>Busan</td>
</tr>
</tbody>
</table>

FIRA与RoboCup的主要区别之一是采用不同的技术规范，FIRA允许一支球队采用传统的集中控制方式，一支球队中的全体队员受同一个大脑的控制，而RoboCup要求必须采用分布式控制方式，每个队员有自己的大脑，是一个独立的主体。
表 1-4 FIRA 比赛项目

<table>
<thead>
<tr>
<th>项目名称</th>
<th>机器人尺寸 (cm)</th>
<th>队员数</th>
<th>场地尺寸 (cm)</th>
<th>球</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAROSOT</td>
<td>4x4x5</td>
<td>5</td>
<td>130x90</td>
<td></td>
</tr>
<tr>
<td>S-MIROSOT</td>
<td>7.5x7.5x7.5</td>
<td>1</td>
<td>130x90</td>
<td></td>
</tr>
<tr>
<td>MIROSOT</td>
<td>7.5x7.5x7.5</td>
<td>3</td>
<td>150x130</td>
<td></td>
</tr>
<tr>
<td>ROBOSOT</td>
<td>15x15x30</td>
<td>3</td>
<td>220x150</td>
<td></td>
</tr>
<tr>
<td>KheperaSot</td>
<td>—</td>
<td>1</td>
<td>105x68</td>
<td></td>
</tr>
<tr>
<td>HUROSOT</td>
<td>15x40</td>
<td>—</td>
<td>220x180</td>
<td></td>
</tr>
<tr>
<td>SimuroSot</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1.1.3 足球机器人系统的工作模式简介

构造足球机器人系统有多中方法不但在系统硬件的结构方面可以不尽相同而且系统软件如控制算法、策略等方面也可以有所变化目前机器人足球比赛系统主要有以下三种工作模式

（一）基于视觉的集中控制型足球机器人系统一般来说这种类型的每个机器人具有驱动与执行机构、通信模块和 CPU 板机器人能够根据接收到的主机发送来的数据控制其运动方向和速度视觉数据处理、策略决策以及机器人的位置控制都在主计算机上完成机器人就像遥控小汽车一样

（二）基于视觉的半自主型足球机器人系统在这样的系统中机器人具有速度控制、位置控制、自动避障等功能主持通过视觉数据分析并进行决策处理然后发出命令给机器人机器人根据命令做出行动反应为了能够自动回避障碍和实现位置控制机器人自身装有传感器

（三）全自主型的足球机器人系统这种类型的系统也可看作是全自主型系统机器人具有许多自主行为所有的计算包括决策都由机器人自身完成主计算机仅处理视觉数据并将有关的位置等信息传送给机器人其实际上相当一种传感器设计者可以根据研究领域和兴趣选择模式第一种模式适合于对视觉处理人
1.2 足球机器人的相关研究

在足球机器人比赛蓬勃开展的同时，与之有关的理论研究也有了长足进展。每一届世界杯比赛都会同时召开机器人足球专题的国际学术会议，例如每年的FIRA Robot World Congress或ICRA, IROS等。同时，机器人足球的研究也赢得了学术界的广泛认同。一些有影响的学术刊物，例如The Journal on Robotics and Autonomous System, The International Journal of Intelligent Automation and Soft Computing等都出版过机器人足球专辑，一些和机器人足球研究相关的论文也经常见诸于一些重要的国际学术会议如ICRA, IROS等。这些学术研讨和交流活动极大地促进了相关学科的理论研究，而理论研究的成果也使得机器人足球比赛的水平不断提高。例如在第一届MiroSot比赛中，大多数参赛队使用的视觉系统的采集/处理速度仅为10帧/秒，机器人速度也不过50cm/s。二年后，视觉系统的采集/处理速度已经提高到30帧/秒，机器人的最高运动速度也达到了2m/s。这些进步得益于电子和计算机技术的发展带来了硬件性能的飞速提高。

与机器人足球相关的论文主要集中于机器人足球硬件平台[1][2][3][12]、运动控制[4][5][6][7][8]、多智能体合作[9][10]、路径规划[11]等领域。

(1) 视觉系统的相关研究

在包括机器人足球系统在内的许多机器人视觉系统中，第一步就是把图像中的像素分到一组离散的色彩类当中。方法主要有下面几种：例如采用神经网络树和多参数决策树来进行自学习[13]，[14]。
（2）该方法首先找出一些确定的颜色类，每个类都有与之相应的隶属度函数，且对于一个像素，找出其隶属度最大的那个类，这种方法和线性色彩阈值法的实时性能都比较差。

（3）使用一组确定的阈值向量把色彩空间分割成长方体，具有良好的使用特性，但是不能很好的利用颜色之间的联系。Newton 实验室提供了通过硬件改变阈值变量以跟踪色彩变化的方法。在对像素点进行分类之后，必须对各个颜色类的点进行分割处理，最终辨识出各个物体。通常的方法就是在对所有的像素进行颜色分类之后，在对分类后的像素进行扫描，将相邻的同种颜色的像素连接成块。这种方法几乎要处理图像中的所有像素点，计算量比较大。为了提供比较好的识别速度，一种基于区域投影算子的识别方法被提出，首先对于由 CCD 镜头所捕获的图像进行宏观位置跟踪，即自上而下自左至右地进行网格搜索，获取目标物体（机器人小车和小球）内一点，然后从该点出发，利用区域投影对目标物体精确定位，得到小球和各机器人的中心位置及各机器人的方位。该方法具有比较好的识别速度，但对摄像机的要求特别高，而足球机器人比赛平台中，大多数系统都是一般的工业用摄像机，画面清晰度有限，往往难以达到该方法的要求。H.E.Chao 针对机器人视觉系统的实时性要求，提出了一种利用 YUV 色彩空间阈值向量分割图象的识别方法，并改进了种子填充算法，明显减少了识别的计算量，并在保证识别精度的条件下提高了运算的实时性。

另一方面，有关足球机器人之间的合作策略的研究也成绩显著。早先的比赛当中，机器人之间缺乏合理的分工协作，很容易挤作一团。现在随着策略研究的不断成熟，这种现象已大大减少。比赛策略涉及到角色的分配、动作和策略的选择等方面。徐心和提出了一种优化性能指标进行角色分配的方法，实现了确定队形、角色分配和角色转换三个功能。该方法适合各种复杂情况下的角色分配，效果较好。H.S.Kim 在提出了一个动作选择机制（ASM）的基础上考虑对方的信息利用，MLP（使用了神经网络方法）进行了改进。主要是考虑如何在比赛所面临的局面下进行动作选择，并在实际比赛中应用。
北京大学硕士学位论文
基于实时全局视觉的足球机器人比赛数据分析系统

H.K.Lam提出了一个决策系统。该系统根据场上的比赛情况动态为每个机器人选择合适的动作和合作策略。主要包含策略库、动作库、策略选择算法、策略选择器和动作选择器。由于该系统利用了专家知识，所以决策结果与专家给出的决策结果类似。实验也证明了该方法的有效性。

Ashley提出了一个多智能体规划系统(MAPS)，用来对环境提供一个统一的表示。该方法强调利用当前的位置信息，比传统的规划对固定的位置预先分配策略更具有灵活性。该方法还有其他一些性质，例如良好的进攻和传球性能。当然，还有其他的一些策略方面的文章。G.Ardoni提出了一种守门员和其他机器人合作的方法。T.Chen提出了一个运动控制和相应的传球策略方法。通过该方法，机器人可以快速传球并转换队形，并在仿真系统中证明了该方法的有效性。由于该方法对位置和时间要求比较严格，而且没考虑到障碍物存在的情况，因此在实际硬件平台中应用的效果值得商榷。

(三)人工智能方法的应用

机器人足球平台是人工智能研究很好的实验平台。下面简要的介绍一些有关人工智能在足球机器人中的应用。模糊逻辑适用于非线性系统，且其最大的特点是将人类的经验系统化，因此在足球机器人中得到了广泛的应用。主要涉及到硬件控制、障碍避免、射门、决策等方面。文[27]使用模糊逻辑控制器和其他的启发式策略构建了机器人的策略系统。该文中使用二个模糊控制器分别针对左轮和右轮来产生速度并反馈给机器人。该控制器比一般的PID控制器更有效和鲁棒性。不过该方法受到机器人位置和角度的精确度的限制。模糊逻辑控制器具有容易理解和良好的鲁棒性，但会面临多变量输入时模糊规则爆炸的问题。

神经网络由于其较好的学习性能在机器人足球中也得到了应用。P.Kopacek实现了一种自适应速度控制方法。利用神经网络更新基于动态环境的控制器，并利用实验证明了该方法具有快速的误差消除和稳定性。遗传算法由于其全局搜索的特性可用于设计足球机器人系统中的基于障碍回避的路径规划。使得机器人可以在避开障碍物的同时找到一条从给定点到目标点之间优化好的路径。
基于实时全局视觉的足球机器人比赛数据分析系统

1.3 FIRA MiroSot 3vs3系统平台简介

FIRA 3vs3微型机器人足球比赛的赛场长1.5米，宽1.3米，如图1-3所示，场地的具体标准见图1-4。每个队伍由边长不超过7.5厘米的立方形的小车机器人组成，它们的任务就是将橘红色的高尔夫球足球撞入对方的球门且力保本方不失球。比赛规则与人类足球比赛相似，如也有点球、任意球和门球等。由于电池容量有限，每个半场为5分钟，中间休息10分钟。下半场结束时若为平局，则有3分钟的加时赛，期间可实行突然死亡法和点球大战。该比赛和人类足球赛明显的不同之处在于球场四周有围墙，所以没有界外球和角球，且双方在相持10秒后就必须争球。
图1-3 FIRA MiroSot 3vs3系统平台

Fig.1-3 FIRA MiroSot 3vs3 System

图1-4 FIRA MiroSot 3vs3场地

Fig.1-4 Playground of FIRA MiroSot 3vs3

（一）机器人硬件子系统

机器人小车系统主要包括机械结构及运动部分、CPU控制单元、通信系统等。

（1）机械结构及运动部分

车体的机械结构及传动齿轮对整个机器人的灵活性起着不可忽视的作用。
（2）CPU

一般的用双电机分别驱动左右两轮的方式，在车体的前后端各有一个支撑轮以保持行进中的车体的平衡。

（3）CPU控制单元

一般机器人小车的CPU是以单片机为核心，包括驱动、速度检测、无线接收等部分。车载CPU一般完成以下功能：根据一定的协议接收上位机的指令，根据速度给定和实测值并按预定控制算法得到控制量，实现PWM方式调速，完成单轮的速度闭环控制。另外，小车上还具有无线接收装置来得到主机发送的命令。

（4）视觉子系统

视觉系统是整个机器人足球比赛的关键，通过视觉系统能够确定本方机器人、对方机器人和球的位置和角度，从而为比赛策略提供场面信息。识别效果的好坏、识别速度的快慢直接关系到比赛的胜负。在足球机器人系统中，视觉识别子系统由CCD镜头、图像采集卡等硬件设备和视觉识别软件组成。视觉识别软件包括视频捕获和视觉识别两个部分，视频捕获用于获取视频信息，为视觉识别提供图像信息。

在Windows环境下，视觉系统通过CCD摄像头和视频采集卡获取视频信息，将这些信息直接存放在内存中，由视觉处理程序直接对其进行处理。

（5）主机系统

MIROSOT只允许使用一台主机计算机，其计算速度对于整个系统很关键。主机主要负责接收视频数据并进行图像处理，得到球和队员的位置、方向、速度等信息，辨识攻守态势，做出决策，并将命令通过串行口送到发射器。

（6）通信系统

根据比赛规则，主机和机器人之间需采用无线通讯。实际的平台通常采用无线数字通讯。主机的RS-232数据经过调制然后发射出去，机器人的通信部件接收并解调成RS-232数据，传递的命令主要包括机器人标识、命令和数据。

（7）控制结构及策略

FIRA MiroSat足球机器人系统采取集中控制，主机是上级，基本任务是通过决策分配任务给机器人；机器人是下级，其任务是精确地执行命令，整体控制结构。
1.4 本文的研究工作

当前策略系统的研究是机器人足球系统研究的热点之一。它涉及到路径规划、动作控制、多智能体合作等问题。策略系统的好坏通过比赛成绩来检验，但只能从大体上对系统策略进行评价，缺乏定量分析。为了对策略系统进行分析和研究，必须找到一种行之有效的方法。当前策略系统的分析主要是通过对比赛的DV录像进行赛后的主观分析进行的。仿真平台由于不能完全模拟现实的环境，没能解决定量分析的问题。为此，我们设计了一个解决方案，开发一个基于全局视觉反馈的足球机器人比赛数据分析系统。整个研究工作包括以下几个部分：

(一) 为了获取更准确的数据，我们通过颜色模型的变换、基于运动区域和方向的预测、处理区域的选择、局部搜索和全局搜索的结合等方法对全局视觉系统进行了改进，使得目标识别的速度和稳定性都得到了提高。

(二) 针对全局视觉系统获取的数据中存在大量无效数据，提出了线速度约束。...
角速度约束、轨迹平滑性约束和重叠性约束等四个约束条件对数据进行预处理来逼近物理录像。在此基础上可以对比赛场景在赛后进行回放，并为了研究方便提供了许多实用的播放功能。

实现了在线和离线的数据分析功能。机器人的运动性能离线对机器人的直线运动进行了校正，使用模糊控制在线进行运动死锁决策，离线进行技战术自动统计。主要包括犯规、比分、射门、控球时间等等。通过提供标准接口和自定义接口离线进行基于内容的比赛视频检索。

1.5 小结

论文第一章主要对足球机器人进行了介绍。第一节简要介绍了机器人足球比赛，并举出RoboCup仿真比赛和FIRA微型机器人比赛作为例子。第二节对相关研究进行了综述。第三节分析了机器人足球系统对各个子系统的地位、工作原理和面临的挑战作了简要阐述。第四节简要介绍了本文的研究工作。下一章重点介绍机器人足球的全局视觉系统和改进。
第二章 全局视觉系统及其改进

2.1 全局视觉系统简介

FIRA MiroSot 3vs3 足球机器人全局视觉系统是由置于场地上方 2 米的摄像头及其相关软硬件组成的（如图 2-1 所示）。其主要任务是图像获取和图像处理，得到机器人和球的位置与角度信息并传递给策略子系统。目标识别是机器人足球视觉系统的重要部分。由机器人足球比赛的规则知道，每个队都有自己的队标颜色（蓝色或黄色），将颜色标签贴于机器人的顶部。除队标颜色外，每个机器人在其顶部还贴有队员颜色标签用于识别队员（各个队自己确定但不能与队标及场地颜色相同，如图 2.2 所示）。

视觉系统中的摄像头

球场
目标识别主要包括以下几个步骤：

1. 目标体的特征提取
2. 多个目标体的分割
3. 各个目标体的体位姿态的辨识

为了满足足球机器人比赛的需要，视觉系统每秒钟要处理几十到上百幅画面，画面之间的间隔时间不仅要完成视觉识别，还要完成机器人的策略选择、运动控制等全套工作。可以想象，输入主控计算机内部的场景图像是最直接的信息来源，而视觉图像的识别质量和速度直接关系到系统工作的准确性和实时性。

NTSC制式的模拟视频信号经数字量化得到24位的RGB信号，每个分量为0-255的整数值。为了去除图像中的噪声，应采用滤波器对输入的数字图像进行预处理。

2.2 视觉系统的特殊性

足球机器人视觉系统与一般的机器视觉系统相比，有很强的特殊性。这主要体现在两个方面：视觉环境的复杂性和系统反应的高度实时性要求。

一、视觉环境的复杂性

目前，对目标体的特征提取主要是对不同的目标体建立相应的特征颜色信息。该信息库的建立比较简单，将目标的色标置于场地内最有特征的几个区域，如门区、中圈、四角等位置进行采样，采用RGB或HSI颜色模型来确定每个目标的颜色特征范围即可。但带来的一个很严重的问题是，由于视觉环境的复杂性，这主要包括目标体的颜色种类多、不均匀的比赛现场照明、照明情况的变化范围大、光线发射率的不同、阴影的干扰、物体间的遮挡、场景的变化、运动的目标、对抗的局面和场地周围观众的影响等等。如图2-3和2-4所示，因此理想的...
信息库实际上是比较难以建立的，如果信息库覆盖范围过小会导致分割结果不稳定，甚至出现分割结果过小而导致目标丢失，而信息库覆盖范围过大又会引入很多不必要的干扰，甚至出现混色现象，这种情况经常出现。

图2-3同一服装在不同区域的效果
图2-4同一id颜色在不同位置的效果

(二)视觉系统的实时性

足球机器人快速的运动和激烈的对抗要求视频捕获频率为30帧/秒即必须在16ms内完成视觉信息处理通讯动作规划等一系列任务以形成下一周期的比赛策略，这对视觉系统的实时性提出了很高的要求，一些时间复杂度高的算法很难直接使用。

2.3 运动目标的视觉跟踪

视觉系统对运动目标进行跟踪的方法如下

1. 设置阈值，为了把图像中的像素分到离散的色彩类当中，使用比较广泛的是阈值法，即识别某种颜色的一种重要方法是定义该颜色在颜色空间中各分量的下界和上界。如果待测颜色的三分量分别在对应分量的下界和上界之间，则认为待测颜色属于该颜色。这里将用于判断和识别某种颜色的各分量的下界和上界组成一个向量，称为颜色特征向量，以HSV颜色空间为例，假设颜色K的特征向量定义为

\[
C(y, Y, u, U, v, V) \quad (2.1)
\]

则对于一个待测颜色t，如果其三个分量，满足

\[
y \leq y' \leq Y, \quad u \leq u' \leq U, \quad v \leq v' \leq V
\]

则t被识别为颜色K。可以看出，设置阈值主要是进行二值化图像处理，实现分离目标和背景，处理后的视觉数据所需存储容量小，执行速度快。

信息科学技术学院智能科学系
使用阈值法的关键问题是如何设置阈值。主要可采用两种办法：手工设置阈值和自动训练设置阈值。手工设置阈值的方法是将机器人摆放到场地的不同位置，操作者通过观察并根据经验调整颜色特征。这种人工调整的方式是很费时间的。在比赛中，赛前准备时间有时要远远超过实际的比赛时间，已经成为制约赛程进度和水平的一个瓶颈问题。为此，可使用自动训练设置阈值方法，其主要思想是先对目标进行离线训练，在获取其颜色信息后，进行在线识别。递归分组标记算法主要是递归寻找在图像中所有相关联的元素，并给同一部分中的所有点赋予独一无二的值。它的主要思路是当进行完初始化后，可根据机器人和球的位置，在附近相关点进行搜索，这样就不必处理整幅图像而只处理相关部分，其步骤见图2-5。

(3) 顺序相关算法

虽然递归分组标记算法可缩短视觉处理时间，但如果失去目标将导致系统运行中断。为解决这一问题，在此采用顺序相关算法，方法如下：第一步，扫描方向为从左到右，从上到下；第二步，如果象素是单位值，那么A；如果仅是它的上方或左侧邻近象素标记相同，那么复制此标记B；如果它的上方和左侧邻近象素标记相同，那么复制此标记C。顺序相关算法流程图见图2-5。

Fig.2-5 Flow chart of recursive points marking method

(3) 顺序相关算法
第四步 找到顺序表中等值集合中的最小标记

第五步 扫描图像，用自身等值集合中的最小标记替换其他标记

2.4 视觉系统的改进

(一) 颜色模型的转换

从 RGB 到 HSV，视觉系统大都采用基于电荷耦合器件的光电图像转换系统作为摄像输入系统。被识别物体呈现的反射光线经过摄像光学分光分为红、绿、蓝（RGB）分量，然后由CCD进行转换量化输出。其典型的输出参数为R、G、B。我们原始的视觉系统也采用了RGB颜色模型，该颜色模型计算关系比较简单，因为可不经换算直接采用CCD摄像器输出值。但是，实验结果表明，对同一颜色属性物体在不同条件（如光源种类、照度、物体反射特性等）下，其测得的RGB颜色值分布很分散，三个分量互相关联变化，波段非常宽，占据整个空间的比例非常大，很难确定识别RGB的阈值范围，非常容易把并非指定颜色的物体包括进去或者漏却了应该识别的部分物体，这样也会导致赛前花费大量的时间来进行调校工作。
HSV颜色模型（图2-6所示）将采集的颜色信息分为色调、饱和度和亮度三种属性量。从原理上说，较之RGB模型更适合于用作识别处理的基础。色调属性H能较特征地反映颜色种类，对同一颜色属性物体具有比较稳定和较窄的数值变化范围，可以选作为基本识别参数。但是当RGB较小，即亮度V较小时，色调H值不确定，不同颜色物体的色调区别不显著。此时识别的参数值应包括亮度V。因此实际上进行转换的时候我们只用到了H和V，这样也节省了处理时间。图2-7是一幅在室内拍摄的黄色乒乓球的色调灰度图、亮度灰度图、饱和度灰度图，由图可见，其中色调灰度图的目标和背景的灰度明显不同，只是有一部分阴影区域的色调与小球的色调非常接近，亮度灰度图的目标和背景之间的边界很清楚，饱和度灰度图的背景和目标的界限不是很清楚。图2-8为图2-7所对应的灰度直方图，可以看出，色调灰度图中的背景和目标都只在很小的波段内，不到整个空间的1/10，因此对指定色调进行识别时不会将其他颜色包括进来。阈值和之间的色调为黄色乒乓球所对应的颜色LH*。而亮度灰度图尽管所占据的范围，1/10。
基于实时全局视觉的足球机器人比赛数据分析系统

d\text{HSV}模型比\text{RGB}模型更适合作为视觉识别系统的基础。因此，我们对以前的视觉系统进行了模型转换，选取其中的\text{H}和\text{V}参数作为识别处理的判别依据。下面是转换公式：

\[
\begin{align*}
V &= \max(r, g, b), \quad V_{\min} = \min(r, g, b) \\
\text{if } V = 0 \text{ or } V = V_{\min} \text{ then } H = 0 \text{ and } S = 0 \\
\text{if } r = V \text{ then } H = \frac{g - b}{V - V_{\min}} \\
\text{if } g = V \text{ then } H = 2 + \frac{b - r}{V - V_{\min}} \\
\text{if } b = V \text{ then } H = 4 + \frac{r - g}{V - V_{\min}} \\
H &= H \times 60 \\
S &= \frac{V - V_{\min}}{V}
\end{align*}
\]

当然，如果每个待检测的像素都进行上述转换需要较长时间，不适合在线识别。为了提高速度，我们进行了一些改进。例如对于小球，由于其为橙色，可以知道其\text{R}值远大于\text{G}，且\text{G} > \text{B}，所以我们可直接得出小球的\text{H} = \frac{60 \times (g - b)}{(r - b)}，而减少了计算时间。

实验证明，经过颜色模型的变换，比赛时的准备时间大大减少。从原来平均20多分钟减少到现在的5分钟左右，视觉系统的识别稳定性能有了极大的提高。

在对视觉系统调试好以后，假设环境条件不变化，利用我们开发的数据分析系统统计得到如下结果：采用\text{RGB}模型时，机器人在1分钟（3750个周期，1周期16ms）的自由踢球时间里识别丢失的周期数为600多个。改变为\text{HSV}模型后，识别丢失的周期数减少为120多个。

（二）运动方向和区域的预测

当球不与墙壁和机器人接触时，假设球受到外力仅为场地施加的摩擦力。假定摩擦力为常量，方向与小球的运动方向相反，则由牛顿第二定律，我们有：

\[
F_{\text{friction}} = m \cdot a
\]
here, \(m \) is the mass of the ball, \(\mathbf{b} \) is the position vector of the small ball, and \(\mathbf{b}' \) is:

\[
b(t + T) = b(t) + T \left(\mathbf{b}' - \frac{T^2}{2 \| \mathbf{b}' \|} \right) - u g \frac{T^2}{2 \| \mathbf{b}' \|}
\]

(2.4)

Through this equation, we can predict the position of the ball in the next few cycles. However, the ball will always collide with the wall or the robot. We will solve these two situations:

1. Ball and wall collision
 - Assume that the collision between the ball and the wall is elastic, and one of the characteristics of elastic collision is that the reflection angle equals the incident angle. We will explain our prediction algorithm with Figure 2-9 as an example. Other scenarios can be considered similarly.
 - Assume \(Y_{MAX} \) is the maximum value of the \(Y \) axis coordinate, which is also the maximum width of the field. Then, if \(y_b(t) > Y_{MAX} \), we need to correct the predicted value of the ball due to the wall collision. Let \(y_d(t) = -y_b(t) \) and assume the collision between the ball and the wall is elastic, then the corrected predicted value of the ball after the collision is:
 \[
y_b(t) = y_b(t) - y_b(t)
\]
 Here, \(y_b(t) \) represents the uncorrected predicted value, and \(y_b(t) \) represents the corrected predicted value after collision.

2. Ball and robot collision
 - For Figure 2-10, let \(\mathbf{b}' \) be the velocity of the ball before collision, and \(\mathbf{b}'' \) be the velocity of the ball after collision. We will consider this scenario with Figure 2-10 as an example. Let \(d = y_b(t) - Y_{MAX} \), then:
 \[
y_b(t) = 2Y_{MAX} - y_b(t) \quad \text{and} \quad y_b(t) = y_b(t)
\]
 \(y_b(t) \) represents the uncorrected predicted value, and \(y_b(t) \) represents the corrected predicted value after collision.

Fig.2-9 Collision between ball and wall
Fig.2-10 Collision between a robot and the ball
假设碰撞是弹性的，则得到

\[b^+ = R(\theta) b^- + v \]

其中，\(R \) 是旋转矩阵，\(\theta \) 是球的入射角，其定义如下

\[
R(\theta) = \begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]

现在假设和球相撞的机器人的速度为 \(v \)，则碰撞后球的速度变为

\[b^+ = R(2\theta) b^- + v \]

关于机器人的预测其重要性相对来说比球的重要性要差一些，因此我们的预测方法比较简单，即利用前几个周期位置的变化值加上当前周期的位置来简单预测下一个周期的位置，这里就不再详述。

三 处理区域的选择

足球机器人系统的实时响应速度是决定系统竞争力的重要因素之一，计算机构的运算和操作速度必须与它所控制的对象实际运行过程相适应，为了达到这一要求，需要从硬件和软件两个方面来保证。在足球机器人系统中，从图像捕获、图像处理、图像辨识到确定决策对策、无线通讯发送命令，再到无线通讯接收命令以及小车执行命令规定的动作，到执行结果产生一个新的图像，构成一个完整的闭环控制过程。要使系统的实时性能达到理想状态，就需要在20ms内完成上述处理任务。上述实时任务周期性执行，每个周期包括以下时间段

1. 图像数据传送时间 \(T_1 \) ，一般的图像采集卡上只有总线控制器而没有存储器，大量的图像信息（一场为450KB）要通过总线传送到主机的内存，在此过程中，主机CPU处于总线挂起状态，不能进行数据的处理。
2. 图像像素传送累计间隔时间 \(T_2 \) ，摄像机捕获一场图像的时间约为 \(T_W = 20ms \) ，在此期间采集卡通过总线将各图像信息传送至主机内存（前面提到的传送时间 \(T_W_1 \)），图像传送时间 \(T_W_1 \) 小于图像捕获时间 \(T_2 = T_W - T_1 \) 为图像传送累计间隔时间。
3. 图像处理辨识时间 \(T_3 \) 和决策推理时间 \(T_4 \)。
这两部分时间与主机工作频率资源利用算法有关也可以通过软件方法缩短发送命令时间 T_5。

系统中采用串行通讯发送命令发送命令时间 T_5 与通讯的波特率有关给每个小车发送3字节命令如果通讯波特率为4800则连续发送时需要 $T_5=20\text{ms}$。

执行命令时间 T_6 机器人小车从接受到主机发出的动作命令到执行控制动作需要时间 T_6。这段时间与机器人小车的性能有关实际的比赛平台中 T_5 和 T_6 与前面的处理时间是并行的则可以得到每完成一次处理需要的时间是 $T=T_1+T_2+T_3+T_4$。

通过减少 T_3 便可以来提高系统的反应速度减少 T_3 有多种方法比方说我们前面提到的预测除此之外我们提出了视觉处理的选择性方法所谓视觉处理的选择就是某些连续的周期只对感兴趣的对象进行识别我们知道决策系统主要是根据球的位置来制定策略给一个机器人赋予进攻角色另外一个队员辅助角色还有一个队员是守门员角色当球处于关键区域比如说本方禁区时总有一个队员扮演关键角色这里守门员很重要因此视觉处理时可以考虑停止对另外两个队员和对手的识别这样就可以较少物体识别的时间当然为了防守的需要一般还得保留对本方一个球员的识别。

Fig. 2-11 The selectivity of process field
如图2-11所示，此时我方一个队员处于绝佳的射门位置，因此可以考虑在接下来的一些周期暂停其他机器人的识别，从而节省处理时间。关于视觉选择性在系统中的实现，我们主要提供了一些开关函数：

- `FindHomeRobot(int whichrobot, bool CloseFlag)`
- `FindOppRobot(int whichrobot, bool CloseFlag)`
- `FindBall(bool CloseFlag)`

由决策系统调用。决策系统如果发现下面连续一些周期某个队员处于关键区域，则可以调用开关函数来关闭对其他物体的识别。实验表明，在关键区域停止对对手和本方一个队员的识别能够节省7~8ms的处理时间，这在实时性要求比较高的足球机器人系统中是非常重要的。

当然，这会产生一个问题：如果我们连续几个周期停止对其他队员的识别，那么当我们调用开关函数激活对物体的识别时还能否找到物体？解决该问题的一个方法是利用前面所提到的基于运动方向和区域的预测，第二个方法就是下面提到的局部搜索和全局搜索相结合的方法。

（四）局部搜索和全局搜索相结合

比赛中，由于各种复杂因素，有时候会出现目标长时间丢失的现象，很大的影响了策略的执行效果。下面分析出现该现象的原因和给出的解决办法。在视觉处理的选择中，我们看到如果视觉处理、决策推理和通讯命令的发送超过16ms，且存在通讯延迟时，机器人很容易丢失。另外，我们采用了视觉处理的选择性后，更容易造成其他未被选择的物体识别的丢失现象。为了解决这个问题，我们采用了局部搜索和全局搜索相结合的方法。

图2-12 扩大搜索范围

Fig.2-12 Expanding the searching area
假设目标没丢失前，我们的局部搜索范围为固定值 a，则目标丢失后，我们可动态的扩大搜索范围到 $\kappa \alpha$，其中 $\kappa > 1$，和时间有关。随着目标丢失时间的增加而变大。在实战中证明，使用局部搜索和全局搜索相结合的方法后，比赛中很少会出现以前目标长时间丢失的现象。表2-1显示了将视觉系统进行改进后和改进前的比较的结果。

<table>
<thead>
<tr>
<th></th>
<th>改进前</th>
<th>改进后</th>
</tr>
</thead>
<tbody>
<tr>
<td>赛前准备时间</td>
<td>20多分钟</td>
<td>5分钟左右</td>
</tr>
<tr>
<td>视觉处理时间</td>
<td>12ms</td>
<td>约8ms</td>
</tr>
<tr>
<td>位置识别准确性</td>
<td>$\leq 2cm$</td>
<td>$\leq 1cm$</td>
</tr>
<tr>
<td>角度识别准确性</td>
<td>角度偏差平均为10度</td>
<td>角度偏差平均为7度</td>
</tr>
<tr>
<td>稳定性</td>
<td>15%的比赛周期识别结果无效</td>
<td>5%的比赛周期识别结果无效</td>
</tr>
</tbody>
</table>

表2-1中赛前准备时间指比赛前对视觉系统进行调试的时间，视觉处理时间指比赛进行时进行目标识别所需要的CPU时间。在准确性的比较中，由于视觉系统识别的位置是以厘米为单位给出的，因此对视觉系统进行改进后的位置识别误差用cm来衡量。稳定性是指整个比赛过程中识别无效的周期个数所占的时间比值。从结果可以看出，改进后的视觉系统性能有了很大提高。

2.5 小结

本章第一节介绍了视觉系统的组成，第二节介绍了视觉系统的特殊性，比赛环境的复杂性和比赛的实时性，第三节详细的讲述了视觉系统的原理，第四节中提出了我们对视觉系统的改进，主要有四个方面：颜色模型的转换，运动方向和区域的预测，处理区域的选择性，局部搜索和全局搜索相结合。第三章将介绍如何从比赛中得到比赛数据，对其进行预处理，并在此基础上实现的一些分析功能。
通过全局视觉的实时反馈，得到由每个机器人和球的位置与姿态信息组成的原始比赛数据。但是，由于第二章中提到的全局视觉的特殊性的原因，这些比赛数据记录的轨迹和实际比赛录像之间存在很大的差别，将这些导致差别的数据定义为无效数据。在实际记录下来的比赛数据中，存在着大量的无效数据。为了对比赛进行精确的分析，需要对其进行一些预处理来消除。在此基础上才有可能实现一些高级的数据分析功能。

3.1 GVCD数据的定义和问题

在物理平台比赛时通过全局视觉系统获取的数据可以用于比赛的再现和数据分析。但是关于数据的获取有下面的要求：

(1) 不能明显影响硬件平台比赛的实时性能
(2) 获取的数据能够准确的描述场上的情形

关于第一个要求，我们通过如下方法来解决：在内存中开辟一个缓冲区，把每个周期所需的信息存储到该缓冲区中。比赛后再将该缓冲区的内容保存到硬盘上。可以看出，获取比赛数据时仅仅使用了几个赋值操作，这对平台实时性能的影响微乎其微。

为了满足第二个要求，需要考虑哪些数据是应该记录的。关于本方，由于视觉系统已经计算出本方机器人的位置和方位角供策略系统决策，这些信息能够满足赛后分析和回放的要求。关于对方，我们只记录了对方的位置，而关于对方位置的获取主要通过计算对方队服中心的位置得到。我们把需要记录的比赛数据定义为基于全局视觉的比赛数据，Global Vision based Competition Data，简称为GVCD。i时刻的GVCD格式表示如下：

\[GVCD_i = (F_B, F_H, F_O) \] (3.1)
北京大学硕士学位论文

基于实时全局视觉的足球机器人比赛数据分析系统

其中，$FB_i = (Ball_i, Ball_i')$，

$$FB_i = (H_{1x}^i, H_{1y}^i, H_{10}^i, H_{2x}^i, H_{2y}^i, H_{20}^i, H_{3x}^i, H_{3y}^i, H_{30}^i)$$ (3.2)

$$FH_i = (O_{1x}^i, O_{1y}^i, O_{2x}^i, O_{2y}^i, O_{3x}^i, O_{3y}^i)$$ (3.3)

$$FO_i = (O_{1x}^i, O_{1y}^i, O_{2x}^i, O_{2y}^i, O_{3x}^i, O_{3y}^i)$$ (3.4)

通过记录下来的数据文件来看，一场比赛总共只需要 2 兆字节的存储空间，这比用 DV 录像带记录数据所要的几百兆字节空间要小的多。当然，我们所得到的数据中必然存在无效数据，这主要是由于机器人之间的干扰、场地灯光条件的变化、实时处理速度的不够等等。表 3-1 和表 3-2 给出了无效数据的例子。

表 3-1 中，对方机器人的位置识别为 -1/-1，表示当前时刻没有检测出对方，这可能有两个原因，一是由于前面的周期处理的时间过长导致当前处理的图像已经是几个周期后的事情，二是由于对方机器人可能处于照明条件不好的位置，因此未能检测到。

表 3-2 中，本方 1 号机器人的角度识别为 59/58，是无效数据，其主要来源于球员之间色块的互相干扰。

<table>
<thead>
<tr>
<th>H_{30}^i</th>
<th>O_{1x}^i</th>
<th>O_{1y}^i</th>
<th>O_{2x}^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>261</td>
<td>131</td>
<td>103</td>
<td>145</td>
</tr>
<tr>
<td>272</td>
<td>132</td>
<td>103</td>
<td>144</td>
</tr>
<tr>
<td>267</td>
<td>-1</td>
<td>-1</td>
<td>144</td>
</tr>
<tr>
<td>272</td>
<td>132</td>
<td>103</td>
<td>144</td>
</tr>
<tr>
<td>267</td>
<td>132</td>
<td>102</td>
<td>144</td>
</tr>
<tr>
<td>267</td>
<td>132</td>
<td>102</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H_{1x}^i</th>
<th>H_{1y}^i</th>
<th>H_{10}^i</th>
<th>H_{2x}^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>116</td>
<td>182</td>
<td>92</td>
</tr>
<tr>
<td>109</td>
<td>117</td>
<td>184</td>
<td>93</td>
</tr>
<tr>
<td>115</td>
<td>116</td>
<td>59</td>
<td>93</td>
</tr>
<tr>
<td>116</td>
<td>116</td>
<td>58</td>
<td>93</td>
</tr>
<tr>
<td>114</td>
<td>113</td>
<td>182</td>
<td>94</td>
</tr>
<tr>
<td>112</td>
<td>111</td>
<td>183</td>
<td>94</td>
</tr>
</tbody>
</table>

信息科学技术学院智能科学系
3.2 GVCD 数据的四个约束条件

无效数据的存在严重影响了对比赛的分析，因此必须找出这些无效数据并且对之进行处理。那么如何找出它们呢？

我们知道，每个周期图像采集卡都会将场景信息传送到内存中，这样则连续帧之间的关联很强，机器人的运动具有连续性，即其运动轨迹总是由连续的片断组成，且机器人本身的硬件性能有一定的规格，即机器人每个周期运动的距离和转动的角度都有范围，这些知识构成了我们找出无效数据的基础。利用这些知识，可提出4个约束条件来找到无效数据并对其进行处理。

(1) 线速度约束

这种约束主要是针对机器人的位置周期内的变化超过了其最大值，如图3-1和3-2所示，而这种现象存在的原因在于：一是机器人之间的干扰，二是对上一个周期的图像的处理和决策时间过长而导致了信息延迟等等。下面是利用该约束查找无效数据的方法。设某个对象i时刻的位置数据已经确认为有效数据，若

\[|x_i - x_{i-1}| / T > v_{x_{\max}} \]

\[|y_i - y_{i-1}| / T > v_{y_{\max}} \]

则判定该对象i+1时刻的位置数据为无效数据。在我们的系统中，max为3cm/T，为3cm/T。

![图3-1 机器人在周期i的位置](image1)

![图3-2 机器人在周期i+1的位置](image2)

对于该类型无效数据的处理主要有两种办法：对于由于机器人之间的干扰导致的无效数据，利用线性插值法替换无效数据即可解决。信息延迟导致产生的无效数据实际上是有效的，只不过中间少了若干周期没处理，保留该无效数据。

这种约束主要是针对机器人的角度周期内的变化超过了其物理最大值（如图3-3和3-4所示）。
这种现象存在的原因是机器人之间的干扰位置识别的不准确信息延迟等等。
下面是利用该约束定义的无效数据。
设某对象i周期的角度数据已经确认为有效数据若1m|| iθθ θ−−>ax则判定该对象i+1周期的角度数据为无效数据。
在我们的系统中max 45θ = D同样对于不满足角速度约束的无效数据的处理主要有两种办法：
对于由于机器人之间的干扰导致的无效数据利用插值法替换无效数据即可解决
对于信息延迟导致的无效数据与线速度约束的处理方法类似保留该数据。

图3-3 i周期的机器人姿态
图3-4 i+1周期的机器人姿态

三 轨迹平滑性约束
这种约束主要是针对机器人轨迹的抖动（不连续性）而提出的。该现象的存在来源于视觉系统识别的不稳定而不稳定产生的原因是各方面的比方说该位置范围的照明条件不好机器人互相干扰等等。
首先初步对数据进行平滑设某对象i周期的位置数据和姿态角度数据已经确认为有效数据若\[|x_{i+2} - x_i| < \alpha_x, \quad |x_{i+1} - x_i| + |x_{i+2} - x_{i+1}| \geq \beta_x\]
\[|y_{i+2} - y_i| < \alpha_y, \quad |y_{i+1} - y_i| + |y_{i+2} - y_{i+1}| \geq \beta_y\]
\[|\theta_{i+2} - \theta_i| < \alpha_\theta, \quad |\theta_{i+1} - \theta_i| + |\theta_{i+2} - \theta_{i+1}| \geq \beta_\theta\]
则判定该对象i+1周期的姿态角度数据为无效数据。当然该公式只能处理相邻周期位置不断摆动的情况。对于每2个或者多个
设球 i 周期的位置数据和姿态数据已经确认为有效数据，则对 i 周期后 T 个周期的数据进行两项统计不同值的位置个数 NumofPos 和位置差值的符号变化次数 NumofSignChange；

对于静止物体如果 $\text{NumofPos} < a$ 且 $\text{NumofSignChange} > b$，对于运动物体如果 $\text{NumofSignChange} > b$ 则判断物体的位置从当前周期 i 到周期 $i+T$ 发生了抖动，其中 T, a, b 根据实际视觉系统的识别效果来选择。找到这些抖动数据后处理起来就相对比较简单了，我们采用的是用正确值替换导致抖动的数据。图 3-5 和 3-6 是对物体的轨迹利用前面三种约束处理前后的效果对比，图 3-5a 处理前球的轨迹，图 3-6a 处理前对方机器人的轨迹，图 3-5b 处理后球的轨迹，图 3-6b 处理后对方机器人的轨迹。
该约束主要是针对场上机器人之间非常靠近或者机器人靠近场地边界时出现的情景。如图3-7和3-8所示。

图3-7 两机器人重叠
图3-8 机器人与墙壁重叠

第一种情况出现的原因是机器人之间色块的互相干扰，第二种情况由于光线条件不好或者摄像头校正没处理好引起的。对不满足该约束的无效数据的查找比较简单。对于第一种情形，若在时刻t有

\[|x_i^1 - x_i^2| + |y_i^1 - y_i^2| < \alpha \]

则判定t时刻的数据是重叠数据。对于第二种情形，若在时刻t有

1. \[x_i < \alpha_1 \parallel x_i > \alpha_2 \parallel y_i < \beta_1 \parallel y_i > \beta_2 \]
2. \[\alpha = 8, \quad \alpha_1 = 127, \quad \alpha_2 = 147, \quad \beta_1 = 127 \]

相应的处理办法也同样比较简单。

3.3 比赛数据的回放

图3-9是比赛数据分析系统的图形界面的各个组成部分。左图是比赛的回放部分，中间的图是GVCD数据的实时显示部分，右图的上部分是技战术统计的显示，下部分是关键内容检测结果的显示。为了研究的方便，提供了播放、暂停、加速、减速、停止、定位、单帧前进、单帧后退、时间进度条等功能。这些功能主要通过Windows中的系统API定时器函数实现的。另外还提供了实时的比分显示功能。提供了队服颜色和半场的配置。
3.4 数字化应用

在得到GVCD数据后，可以实现以下数据分析功能：

- 机器人运动性能分析
- 运动死锁的检测和解决
- 技战术自动统计分析功能
- 基于内容的比赛视频数据检索

在技战术自动统计中，包括死锁数据的检测，这为我们在第四章中解决死锁问题提供了实验数据。而且数据回放部分可对该死锁情景进行定位回放。

3.4.1 机器人运动性能分析

机器人的运动性能参数可以从购买硬件时的说明书中得到。例如，机器人在比赛中的速度、角度等数据可以通过实时数据分析系统来显示。
赛和训练的次数的增多，其机械性能必定会有变化，主要表现为实际速度值和发出命令的速度值不一致，经常会出现给机器人两个轮子一样的速度值也会导致实际走出弧线的现象，而这肯定会对策略系统的实际效果造成影响。因此为了保证策略系统的有效性，了解机器人的运动性能参数是很重要的，只有这样才能精确的进行路径规划等问题，而且还可以据此来为数据预处理中的线速度约束和角速度约束提供速度阈值。因此，有必要对机器人的直线运动速度进行校正。

手工对机器人做过实验后，发现欲使得机器人直线运动，两轮直线速度差值不大，最多在6个单位内。因此可用硬件平台的程序自动枚举两轮的速度，记录下小车的运动轨迹数据，在数据分析系统中对轨迹利用最小二乘法判断其是否是一条直线，若是则进行下一个速度值的校正，否则继续对现在的速度进行校正。

式(3-5)是我们对一号机器人进行实验的数据和校正结果。

在对机器人做直线运动校正后，便可准确的控制机器人的运动，同时还可以在此基础上求得线速度约束和角速度约束的阈值。表3-3是统计得到的机器人的运动性能表。

<table>
<thead>
<tr>
<th>速度</th>
<th>运动距离</th>
<th>所用时间</th>
<th>Cm/T</th>
<th>平均偏差</th>
<th>Cm/2T</th>
<th>平均偏差</th>
<th>Cm/3T</th>
<th>平均偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>94cm</td>
<td>57T</td>
<td>1.65cm</td>
<td>1.16cm</td>
<td>3.3cm</td>
<td>1.4cm</td>
<td>4.95</td>
<td>1.35cm</td>
</tr>
<tr>
<td>50</td>
<td>136cm</td>
<td>74T</td>
<td>1.84cm</td>
<td>1.032cm</td>
<td>3.68cm</td>
<td>1.26cm</td>
<td>7.36cm</td>
<td>1.36cm</td>
</tr>
<tr>
<td>60</td>
<td>147cm</td>
<td>68T</td>
<td>2.16cm</td>
<td>1.654cm</td>
<td>4.32cm</td>
<td>1.38cm</td>
<td>8.64cm</td>
<td>1.17cm</td>
</tr>
</tbody>
</table>

Table.3-3 The motion performance table of robot 1
3.4.2 运动死锁的检测和解决

在足球机器人比赛中，运动死锁问题经常出现。如果出现这种情况而不采取有效的解决措施，会造成如下几个方面的影响：影响了比赛的智能性，影响了比赛的观赏性，不利于机器人硬件保护。因此，提出了解决运动死锁的方法：模糊控制。利用本系统检测出死锁场景以进行模糊控制器的构造，并利用本系统对解锁结果可视化以利于检验方法的正确性。具体过程将在第四章详述。

3.4.3 技战术自动统计功能

人类足球比赛中，经常要在赛后进行比赛的一些技术统计，如射门次数、进球数、犯规次数、控球时间等等。这有利于对双方的实力进行宏观的评估。为此，我们在系统中加入了技战术自动统计功能。主要包括以下两方面：射门次数、比分、控球时间、犯规次数、死锁次数等等。

关于犯规，系统主要检测了以下五种情况：

(1) 冲撞对方机器人，判给对方任意球。
(2) 若对方非守门员，则检测冲撞时间之前几个周期，如果本方的运动方向朝向对方机器人，对方的运动方向未朝向本方球员，则判定本方犯规；对方犯规可类似判定。
(3) 如果双方相向运动，则不加判定。

注

1. 平均误差指每单位时间T或者2T或者3T内实际运动的距离与平均运动距离的偏差的平均值。
2. 偏移指机器人做直线运动时候由于两轮子硬件磨损导致的垂直于运动方向的偏移。
3. Cm/T指每周期机器人运动的距离。
若对方是守门员，则检测对方守门员的位置是否处于对方禁区，是则判定本方冲撞犯规，否则同（a）的判定类似。

2. 禁区内（见图3-10所示），多于一个人防守判给对方点球。

3. 对方禁区内多于一个人进攻判给对方门球，对于（2）和（3）的检测很简单，只看这些队员的位置是否都位于门区即可。

4. 守门员应在10秒钟内把球从门区踢出去（判给对方点球）。对于这种情况只需要看守门员是否和对方争球，若没争球即如果有且 $i\text{DistGkToBall}_i < \delta_1$，$i\text{DistOppToBall}_i > \delta_2$，则判守门员拖延时间犯规。

5. 本方队员非守门员持球超过10秒判给对方任意球。这种情况的检测和守门员类似。

图3-10 半场的划分

关于控球时间的统计，我们是以每次击球为单位来统计的，方法可用下例来说明：假设在第T_i个周期时我方机器人击球，且在第T_{i+m}个周期发生下一次击球，则本方的控球时间增加$T_{OurTotal} = T_i + m$。如果超过一定的时间双方都没碰到球，则看球处于哪方的半场，如果球位于对方半场，判定是本方的控球时间，否则是对方的控球时间。

关于射门和进球数的统计比较，可在上一节中检索射门和进球时进行计数来得到其总数。
3.4.4 基于内容的比赛视频检索

为了对机器人足球比赛进行策略分析，必须找到一个入口点。比方说，为了分析对方的进攻策略，就得从对方的射门开始，找到这之前的一系列配合传球等等，进而分析对方的攻击套路。为了分析对方的防守策略，就得从本方进攻到前场某一区域后，对方球员如何站位入手。这些方法主要是基于比赛的视频录像进行的。但是，手工查找这些比赛场景比较耗时，且无法得到精确数据进行定量分析。为此，比赛数据系统加入了基于内容的比赛视频检索功能。其主要思想就是通过从GVCD中找出一些重要的比赛内容射门、进球（如图3-11和3-12所示），以及一些特殊情况，并通过将其与比赛DV录像的时间对应从录像中找出实际场景，这样有利于分析和类似于人类比赛的精彩镜头回放。

![Fig.3-11 Shooting scene](image1)

![Fig.3-12 Goal scene](image2)

射门的检索

射门的检测算法如图3-13所示。在对比赛数据进行预处理后，利用最小二乘法得出球的轨迹的直线集合。下面先简要叙述一下最小二乘法的基本原理。最小二乘法主要用于函数逼近。
设已知列表函数\(y_i = f(x_i), \ i = 0, 1, \ldots, m \), \(n(< m) \)

\[p_n(x) = a_0 + a_1x + \cdots + a_nx^n \quad (3.6) \]

则应该选择\(a_0, a_1, \ldots, a_n \)

\[S(a_0, a_1, \ldots, a_n) = \sum_{i=0}^{m} (f(x_i) - p_n(x_i))^2 \quad (3.7) \]

使得

\[
\begin{align*}
 & \begin{cases}
 s_0a_0 + s_1a_1 + \cdots + s_na_n = u_0 \\
 s_1a_0 + s_2a_1 + \cdots + s_{n+1}a_n = u_1 \\
 \vdots \\
 s_na_0 + s_{n+1}a_1 + \cdots + s_{2n}a_n = u_n
 \end{cases} \\
 s_k = \sum_{i=0}^{m} x_i^k, \quad u_k = \sum_{i=0}^{m} y_i^k
\end{align*}
\]

\[X_{n+1} = \begin{vmatrix}
 s_0 & s_1 & \cdots & s_n \\
 s_1 & s_2 & \cdots & s_{n+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 s_n & s_{n+1} & \cdots & s_{2n}
\end{vmatrix} = \frac{1}{(n+1)!} \sum (W(\xi_0, \xi_1, \ldots, \xi_m))^2 \quad (3.9) \]

\(W(\xi, \xi) = \sum_{i=0}^{m} \xi_i(x_i - x_j) = \sum_{i=0}^{m} \xi_i x_i - \sum_{i=0}^{m} \sum_{j=0}^{m} \xi_i \xi_j x_i x_j \)

\[\xi_i \neq x_j, x_i \neq x_j, \ i \neq j \]
在图中，我们设 x_0, x_1, \cdots, x_n 是方程组 (3.8) 的解，a_0, a_1, \cdots, a_n 是方程组 (3.7) 的解，

则方程组 $f(x) = p_n(x) \circ p^*(x)$ 有唯一解 a_n 使得 (3.7) 取最小值 $0_1, $ $n_{xx} x$

方程组 (3.8) 的解为 a_n，使得 a_n 是唯一解。

tx

这样我们就找到了逼近 $f(x)$ 的多项式 (3.8)

由于球的轨迹近似为直线段组成，可假设多项式为一次多项式即可求解 (3.8)

得到球的轨迹直线后，然后对每条直线求得其与对方或者本方边界的交点，以检测本方射门为例，则此时 $x = 150$

则如果 $|\theta_{robot} - \theta_{ball}| < \alpha$，则可判定此段时 $x \geq 150$，考虑到进行最小二乘法求轨迹时的步长，这里可适当将 n 加上常数 $i \eta$ 以避免遗漏解 (3.9)

进球的检索，而对于进球的检索，我们可预先了解场上有哪些进球情况，一种是对方机器人射门导致进球，第二种是本方机器人的乌龙球，还有一些特殊情况，比如球从墙壁反弹后向球门运动，守门员判断失误导致进球。检索进球的方法如下：

在检测射门的步骤中找到直线与球门所在边界的交点 $P(x, y)$，其中 $x' = 150$，$y < 90$，$40 < y' < 90$，$distRobotToBall$

$|\theta_{robot} - \theta_{ball}| < \delta$，$i \in [0, i_{max}]$，$v_{ball}$

从而 θ_{ball} 判断此段时 $x \geq 150$，或 $x < 150$。

自定义检索有时用户可能对某些特定场景比较感兴趣，为此我们在数据分析系统中加

入了自定义检索功能，该自定义检索功能的界面如图 3-14 所示。用户只需要利用

鼠标在球场区域分别指定各个物体的位置，且输入物体角度 θ，则系统会自动在该

点画出物体 θ 当用户单击检测后，自定义检索初始化完毕，此时数据分析系统开始从

GVCD 中找出类似的场景并把结果在分析系统界面右下角的内容检索结果中显示，用户可单击该结果显示此时的场景以比较检测结果是否

正确。例如图 3-13 的界面左边部分便可视化了检索结果。
为了提高检索的灵活性，系统提供了使用距离和方位检测的功能，即数据分析系统根据输入的物体之间的距离或者方位来进行查询，而不是先前的利用位置来查询。其中，高、中、低精度的误差范围不变。

图3-14

Fig.3-14 GUI of user defined search

为了使系统具有容错性，另外提供了精度指定的功能。以α表示位置误差，β表示角度误差。当选择高精度时，α≤1cm, β<7°；选择中等精度时，α≤4cm, β<14°；选择低精度时，α≤7cm, β<20°。这样，GVCD中误差小于指定值的场景都会出现在结果中。自定义检索功能的实现为用户检测感兴趣的场景提供了很大的方便。用户欲检测机器人以特定角度射门的情景，只需在界面上选择好机器人和球的位置，定义好该机器人的角度即可进行检测了。例如对于图3-13中的情景，用户定义了本方1号和2号球员的信息

\[H^1(h_{1x}, h_{1y}, h_{1θ}) \] 与 \[H^2(h_{2x}, h_{2y}, h_{2θ}) \]
Ball\('\) (ball,ball'), Opp3(O_3x,O_3y), GVCD

H1(h_{ix},h_{iy},h_{iθ}), H2(h_{2x},h_{2y},h_{2θ}), Ball(ball,ball')

Opp3(O'_3x,O'_3y), δ, θ

|h_{ix}'-h_{ix}|<δ, |h_{iy}'-h_{iy}|<δ, |h_{iθ}'-h_{iθ}|<θ,

|ball_{ix}'-ball_{ix}|<δ, |ball_{iy}'-ball_{iy}|<δ, |O'_3x-O_3x|<δ, |O'_3y-O_3y|<δ.

GVCD (j=1,2), i, i+λ, λ

3.5
4.1 运动死锁问题的提出

在机器人足球比赛中经常出现本方机器人长时间（一般5秒以上）静止不动或本方机器人和对方机器人因为争球而导致较长时间（10秒左右）的僵持局面，我们把这些局面统称为足球机器人的运动死锁。如图4-1和4-2所示。

图4-1 争球示例1

图4-2 争球示例2
出现这些局面的原因如下

(1) 和对方机器人争球

在机器人比赛中，双方的策略都是围绕球的位置而制定的。大多数的策略系统基本都先将球场分为若干区域，例如前场、左边路、右边路等等，然后根据球在不同的区域而产生动作。每个时刻都有一个机器人负责进攻，另一个协助或者参与防守，还有一个机器人充当守门员的角色。进攻的机器人根据球的位置采取动作，一般都是运动到球附近再采取行动。此时很容易产生问题。如果对方的机器人也采取类似的策略时，双方很容易在边路、球场的四个角落争球，如图4-1和4-2所示。当然，由于双方策略的复杂性，也会出现双方在球场其他地方争球的局面。下面将要提到。

(2) 策略掩护

在本方主要进攻队员处于进攻状态时，另外一个机器人可能去干扰对方球员而导致二者纠缠在一起。这样，即使后来其角色改变，策略系统发给其进攻的命令，但由于其正和对方球员纠缠，再加上硬件上的原因，很难脱离现状态，因此导致长时间不能行动，如图4-3所示。

(3) 路径规划的问题

有些情况下，策略系统给主进攻机器人以position动作，该动作一般以下面两个式子给出机器人的轮速：

\[v_l = \text{int}(K_d \cdot d_e - K_a \cdot \theta_e); \] \hspace{1cm} (4-1)
vr = int(Kd*d_e+Ka*theta_e); (4-2)

其中，

\[vl < vr \] 代表机器人左轮速度，

\[vr \] 代表机器人右轮速度

则在机器人四周有物体时，如果规划不当，则很容易出现机器人无法动弹的情况，如图4-4所示。由于策略系统规划得到 \(vl < vr \)，机器人与墙相撞导致死锁。

4.2 解决运动死锁问题的必要性

目前，参赛队伍一般在出现运动死锁时没有采取相应的对策，而是任之发展，这样会带来几个问题。

(1) 影响了比赛的智能性，比方说有些情形下机器人应该采取解锁策略，这样会导致有利与进攻或者防守的局面。

(2) 损伤了机器人硬件，机器人轮子的控制器比较脆弱，这样机器人出现死锁时如果不采用解锁策略，很容易对机器硬件产生伤害。

(3) 影响了比赛的观赏性，一场比赛一般10分钟左右，出现死锁时一般裁判10秒中后才会鸣笛，而一场比赛一般有10次左右的死锁，出现死锁后很多队伍都会暂停来更换机器人、电池等，这样就导致一场比赛的实际时间会有40分钟左右，这样浪费了大量的时间，也影响了比赛的观赏性。

4.3 运动死锁问题的解决

上面一小节我们已经讨论了解决死锁问题的必要性，那么应该如何解决死锁问题呢？解决死锁问题的关键就在于死锁时是否需要退让，做出是否退让的决定后，如何退让就相对容易解决一些，我们可以将自己代入该死锁的机器人角色来考虑，图4-5中的情景。
在这种死锁情况下，考虑到自身在对方半场，后面有队友防守，即使退让也不会造成对自己很大的威胁，反而有利于局面的流畅和硬件的保护。因此，解决该死锁问题中，人的经验起了很大的作用。由此，我们决定采用模糊控制的方法来解决该问题。

模糊控制系统以模糊数学、模糊语言形式的知识表示和模糊逻辑推理为理论基础，模拟人的模糊思维方法，从而对复杂情形进行控制。当模糊控制系统用来进行控制时，我们称之为模糊控制器。

4.3.1 模糊集合和模糊关系

模糊集合扩展了经典数学中的集合概念。

模糊集合论域 U 上的模糊集合是用隶属度函数 $\mu_A(x)$ 来表征的，取值范围是 $[0, 1]$，可以表示为一组元素与其隶属度值的有序对的集合，即

$$ A = \{(x, \mu_A(x)) | x \in U\} \quad (4.3) $$
模糊集合从经典集合推广了一些运算如等价、包含、补集、交集，都以隶属度函数作为运算对象。例如，U上的模糊集A和B的并集记为A∪B，其隶属度函数为

\[\mu_{A∪B}(x) = \max(\mu_A(x), \mu_B(x)) \] (4.4)

除了上面的一些运算子外，模糊集合还定义了其他的一些算子，主要有模糊补、模糊并、s-范数、模糊交、t-范数、平均算子等。其中，t-范数算子主要有下面几种：Dombi t-范数、Dubois-Prade t-范数、直积、爱因斯坦积、代数积、最小t-范数等等。

4.3.2 模糊语言变量和模糊IF-THEN规则

如果一个变量能够取普通语言中的词语为值，则称该变量为语言变量。这里，词语由定义在论域上的模糊集合来描述。变量也是在论域上定义的。在模糊控制系统中，人类知识用模糊IF-THEN规则来表述，可以表述为IF <模糊命题> THEN <模糊命题>，其中，模糊命题有两种类型：子模糊命题和复合模糊命题。子模糊命题是单独的陈述句，子模糊命题通过连接词且、或、非连接起来构成的命题叫复合模糊命题。

模糊关系上一个重要的运算是模糊合成。令P(U,V)和Q(V,W)表示二个模糊关系，则定义P和Q合成为U=W上的一个关系，记做P⊙Q，其隶属度函数由下式给出

\[\mu_{P⊙Q}(x,z) = \max_{y∈Y} \{ \mu_P(x,y) \cdot \mu_Q(y,z) \} \] (4.6)

以上，t-范数 t-
那么如何解释 IF-THEN 运算呢？在经典命题运算中，表达式 IF \(p \) THEN \(q \) 可以写成 \(p \rightarrow q \) 等价于 \(p \land q \lor \neg p \)。在模糊运算中，可以分别用模糊补、模糊并、模糊交来分别取代其运算。Mamdani 含义是在模糊控制系统中使用最广泛的。模糊 IF-THEN 规则可以解释为 \(U \times V \) 上的一个模糊关系 \(Q \) 或 \(Q \), 其隶属度函数为

\[
\begin{align*}
Q_{MM}(x, y) &= \min\{\mu_{FP1}(x), \mu_{FP2}(y)\} \\
Q_{MP} &= \mu_{FP1}(x) \mu_{FP2}(y)
\end{align*}
\]

(4.7) (4.8)

4.3.3 模糊逻辑和近似推理

在模糊逻辑中，命题都是由模糊集表述的模糊命题。模糊逻辑引入了广义取式推理、广义拒式推理、广义假言推理，它们都是模糊逻辑的基本原理。我们主要介绍一下广义取式推理，这是我们的方法要用到的。给定两个模糊命题 \(x \) 为 \(A \) 和 如果 \(x \) 为 \(A \) 则 \(y \) 为 \(B \) 可推出一个新的命题 \(y \) 为 \(B \) 或者 \(B \) 的隶属度函数就是 \(V \) 上的投影：

\[
\begin{align*}
\text{t-范数算子} &= \sup \{\mu_{A \cap Q}(x, y)\} \\
\mu_{B}(y) &= \sup_{x \in U} \{\mu_{A}(x) \mu_{Q}(x, y)\}, \quad x \in U
\end{align*}
\]

可以看出，如果采取不同的 t-范数和不同的含义规则，式则可得到多个结论。

4.4 模糊控制系统

模糊控制系统由四个部分组成，分别是模糊规则库、模糊推理机、模糊器和
4.4.1 模糊规则库

模糊规则库是由模糊规则集合组成，它是模糊系统的核心。具体说，规则库由下面的模糊 IF-THEN 规则组成:

$$\text{IF } x_1 \text{ is } A_1^{i_l} \text{ AND } x_n \text{ is } A_n^{i_l}, \text{ THEN } y \text{ is } B^i$$

其中，$A_1^{i_l}$ 和 B^i 分别是 $U_i \subset \mathbb{R}$ 和 $V \subset \mathbb{R}$ 上的模糊集合，$x = (x_1, x_2, \ldots, x_n)^T \in U$，$y \in V$，$i = 1, 2, \ldots, M$。

- 完备性：对任意的 $x \in U$，在模糊规则库中都至少存在一条规则，形式如公式 (4.9)。
- 一致性：IF-THEN 部分相同，THEN 部分不同。
- 连续性：临近规则的 THEN 部分的模糊集的交集不是空集。

4.4.2 模糊推理机

模糊推理机主要是利用模糊逻辑原理把模糊规则库中的 IF-THEN 规则组合成一个从 U 上的模糊集到 V 上的模糊集上的映射 $A \rightarrow B$。它使用两种推理方法来进行多规则的推理：组合推理和独立推理。

独立推理的运算过程如下:

1. 对式子 (4.1) 的 M 条模糊规则确定其隶属度函数:

$$\mu_{\hat{A}^{i_l}}(x_1, \ldots, x_n) = \mu_{\hat{A}^{i_1}}(x_1) \ast \cdots \ast \mu_{\hat{A}^{i_n}}(x_n)$$

2. 把 \hat{A}^{i_l} 看作 $A^{i_1}_1 \times \cdots \times A^{i_n}_n$，$FP_1$，$B^i \times FP_2$，$\rightarrow$ Mamdani，意义：

$$\mu_{\hat{R}^{i_l}}(x_1, \ldots, x_n, y) = \mu_{\hat{R}^{i_1}_{\hat{A}^{i_1} \times \cdots \times \hat{A}^{i_n}}}(x_1, \ldots, x_n, y), \quad l = 1, 2, \ldots, M$$

3. 把 A^{i_l} 看作 $A_1^{i_l} \times \cdots \times A_n^{i_l}$，$\rightarrow$ Mamdani。
当模糊推理机的输出是 \(M \) 个模糊集，即

\[
\mu_{B_i}(y) = \sup \{ \mu_A(x), \mu_{R_i}(x, y) \}
\]

（4.12）

（4）

4.4.3 模糊器和解模糊器

大多数应用中模糊系统的输入和输出是实数，所以必须在模糊推理机和外部环境间建立某些接口。此即下面要提到的模糊器和解模糊器。模糊器可定义为由实值点 \(x \) 向 \(U \) 上的模糊集 \(A' \) 上的映射。采用单值模糊器可以大大简化模糊推理机的计算。因此我们采用了该模糊器。

解模糊器定义为由 \(V \) 上的模糊集 \(B' \) 向清晰点 \(y \) 上的映射。中心解模糊器是使用最广泛的解模糊器。我们在解决运动锁死时主要采用了带有单值模糊器的模糊系统，形式为

\[
f(x) = \frac{\sum_{j=1}^{M} y_j (\prod_{i=1}^{n} \mu_{A_i}(x_i))}{\sum_{j=1}^{M} (\prod_{i=1}^{n} \mu_{A_i}(x_i))}
\]

（4.14）

式中，\(x \in U \subset \mathbb{R}^n \) 是模糊系统的输入，\((x, y) \subset \mathbb{R}^m \) 是模糊系统的输出。Wang 证明了上面该模糊系统具有万能逼近能力，可以下面的定理表示。

\[
f(x) \in V \subset \mathbb{R}^m \}
\]

（4.14）

式中，\(x \in U \subset \mathbb{R}^n \) 是模糊系统的输入，\((x, y) \subset \mathbb{R}^m \) 是模糊系统的输出。Wang 证明了上面该模糊系统具有万能逼近能力，可以下面的定理表示。
输入论域 U 是 R^n 上的一个紧集，$e > 0$，则对于任意定义在 U 上的实连续函数 $g(x)$ 和任意 $\varepsilon > 0$，一定存在如式 (4.14) 的模糊系统，使下式成立

$$\sup_{x \in U} |f(x) - g(x)| < \varepsilon$$

逼近的精度可用下式表示

$$\| g - f \|_\infty \leq \| \frac{\partial g}{\partial x_1} \|_\infty h_1 + \| \frac{\partial g}{\partial x_2} \|_\infty h_2$$

式 (4.15) 中，g 是待逼近的函数且假设连续可微，j_{i_e} 与模糊变量的划分有关，

$$h_i = \max_{1 \leq j \leq N_i} |e^{j+1}_i - e^j_i| \to, \quad 0 \leq h_1 \leq h_2 \leq \varepsilon.$$

4.4.4 解决运动死锁问题的模糊控制系统的构成

模糊控制系统正因为这些特性在足球机器人比赛中得到了充分的应用。M.J.Jung 提出了一个有关于射门动作的模糊逻辑控制器 [37]，H.L.Sng 应用模糊逻辑对动态角色分配问题做了比较好的解决 [38]，C.C.Wong 则提出了一个有关障碍避免的模糊控制器 [39]。模糊逻辑也可以用来进行比赛策略设计 [40] [41] [42] [43]。Wang-Mendel [44]，模糊神经网络 [45]，基于遗传算法的模糊系统 [46]，多变量导致的模糊规则爆炸可采用分层模糊控制器 [47] [48] [49] [50] [51]。构造模糊控制系统需要解决下面三个问题：模糊规则的获取，多变量导致的模糊规则爆炸，隶属度函数的确定。关于模糊规则的获取，主要有以下三类方法：Wang-Mendel [44]，模糊神经网络 [45]，基于遗传算法的模糊系统 [46] [47] [48] [49] [50] [51]，多变量导致的模糊规则爆炸，隶属度函数的确定。图 4-6 模糊控制系统

Fig. 4-6 Framework of the fuzzy controller
其中关于模糊规则的确定，我们采用了 Wang-Mendel 方法。同时我们使用了双层模糊控制器来解决模糊规则爆炸的问题。下面是我们建立单个模糊控制器的主要步骤：

(一) 确定输入输出变量。我们用了 8 个输入变量：
- \(\text{DistToBall} \)
- \(\text{Ballx, Bally} \)
- \(\text{DistToTeam} \)
- \(\text{DistToOpp} \)
- \(\text{Arb, Nopp} \)
- \(\text{Aot} \)
- \(\text{Out} \)
- \(\text{DistToNOpp} \)

(二) 把输入和输出空间划分为模糊空间。方法是在每个输入变量的取值区间 \([a, b]\) 上定义 个模糊集，且在 \([a, b]\) 上是完备模糊集。为此我们为每个输入变量都选取了三角形隶属函数，这也是现在最常用的隶属函数。类似的定义 个模糊集在 \([a, b]\) 上也是完备模糊集。完备模糊集的概念见 4.4.1 节。

对于 \(\text{DistToBall} \) 和 \(\text{DistToNOpp} \) 和 \(\text{DistToTeam} \)，其取值区间是 \([0, 200]\)。我们在每个变量上面都定义了三个模糊子集分别为近，中等，远。见图 4-9。对于 \(\text{Arb} \) 和 \(\text{Aro} \) 其取值区间确定为 \([-180, 180]\)。我们分别为其划分了 4 个
模糊子集分别为1, 2, 3, ..., 其中A的取值区间为[0, 180], 而Aot的取值区间为[0, 180]. 我们将其划分成2个区间，分别为后、前。其划分和成员函数见图4-12和4-13。

为了减少模糊规则，我们尽可能减少原则对输入变量进行划分。其有效性通过实验来验证。因此，对于Ballx和Bally，其取值区间分别是[0, 150]和[0, 130]. 我们分别为其划分了2个子集。Ballx的模糊子集为安全、危险；Bally的模糊子集为左和右。其划分和成员函数见图4-14和4-15。

对于第一层控制器Out，我们为其划分了三个区间，分别是撤退、不确定、不撤退。其划分和成员函数见图5。对于第二层的Out，我们为其划分了两个空间，分别为撤退、不撤退。其划分和成员函数如图4-10和4-16。

(三) 根据一个输入和输出数据对产生一条规则。输入输出数据我们可以通过数据分析系统对比赛记录文件进行死锁检测而得。然后选取一些输入输出数据对，根据每个输入输出数据对确定属于模糊集的隶属度值和属于模糊集隶属度值为0, 0.1(0, 0.2, ..., 1)。nxx y

\[\mu_i(x_{0i}^p, y_{0i}^p) \]

\[x_{0i}^p (i = 1, 2, \cdots, N_i) \]

\[A_i^j (j = 1, 2, \cdots, N_j) \]

\[y_{0i}^p \]

\[B_i^l (l = 1, 2, \cdots, N_y) \]

\[\mu_{A_i^j}(x_{0i}^p) \]

\[\mu_{B_i^l}(y_{0i}^p) \]

DistToBall = 11, DistToOpp = 13, DistToTeam = 45, DistToOpp = 0.1, DistToTeam = 0.2, DistToTeam = 0.4, DistToOpp = 0.6, DistToTeam = 0.2, DistToOpp = 0.8。

\[\mu_{B_i^l}(y_{0i}^p) \]

IF-THEN: 如果x为1且A^1且y为0, 则Out = 确定。对于例子来说，可得到如下的规则：如果x为近且A^2且y为远，则Out = 撤退。因此，对于此例，我们还得利用第二层控制器进行决策。
对步骤3中的每条规则赋予一个强度。由于输入输出对的数量通常都比较大，且每对数据都会产生一条规则，所以很可能有冲突的规则。为了解决冲突，可对步骤3中每条规则赋予一个强度，从而使得一个冲突群中仅有一条规则具有最大强度，这样不仅冲突问题解决了，规则的数量也大大减少了。

规则的强度可定义如下：假定式4.9是由输入输出数据对\((x_0^p, y_0^p)\)产生，

$$D(rule) = \prod_{i=1}^{n} \mu_{A_j}^e(x_0^p) \mu_{B_j}^e(y_0^p)$$ \hspace{1cm} (4.16)$$

如果一个输入输出数据对具有不同的可靠性且能用一个数来评价它的话，则把这一信息也合并到规则强度中。具体来说，假定输入输出数据对的可靠程度为\(p^\mu\)，则其规则强度可定义为

$$D(rule) = \prod_{i=1}^{n} \mu_{A_j}^e(x_0^p) \mu_{B_j}^e(y_0^p) \mu^p$$ \hspace{1cm} (4.17)$$

在实践中，如果输入输出数据对数目小的话，可让专家评价其可靠程度。如果不能知道在输入输出数据对之间的差异，可简单的令所有的\(p^\mu = 1\)。

步骤3中产生的与其他规则不发生的规则，一个冲突规则群体中具有最大强度的规则，其中冲突群体规则指的是那些具有相同IF部分不同THEN部分的规则。来自于专家的语言规则，主要指专家的显性知识。可以看出，关于解锁的最终规则库是由显性知识和隐性知识组成的。

基于模糊规则库构造模糊系统

这里选择了带有乘积推理机，单值模糊器，中心平均解模糊器和三角形成员函数的模糊控制系统。其中乘积推理机的定义见4.4.2，单值模糊器和中心平均解模糊器的定义见4.4.3。最终的模糊系统形式为
介绍完模糊控制器的构造过程后，下一步是确定双层模糊控制器的组成。双层模糊控制器的主要思想是找出多输入变量里面相对重要的一组变量组成第一层控制器，其余的构成第二层控制器。考虑到距离在解决死锁时比较重要，我们在第一层设置了下面三个变量：

- 死锁的机器人距离球的距离 DistToBall
- 最近的队友离球的距离 DistToTeam
- 不包括本方守门员距离球最近的对方球员离球的距离 DistToNOpp
- 死锁的机器人与球之间的角度 Arb

如图4-8所示，第一层输入输出成员变量的划分和成员函数见图4-9和4-10。剩下的5个变量构成第二层控制器，如图4-11所示，其模糊子集的划分和成员函数如图4-12到4-16所示。

$$f(x) = \frac{\sum_{j=1}^{M} y_j \left(\prod_{i=1}^{n} \mu_{A_i}(x_i) \right)}{\sum_{j=1}^{M} \left(\prod_{i=1}^{n} \mu_{A'_i}(x_i) \right)} \quad (4.18)$$
图 4-10 Out 的成员函数

Fig. 4-10 The membership function of Out

图 4-11 第二层控制器的变量

Fig. 4-11 Variables of the second level FLC

图 4-12 Arb 和 Aro 的隶属度函数

Fig. 4-12 Membership functions of Arb and Aro

图 4-14 Bally 的隶属度函数

Fig. 4-14 Membership function of Bally
4.5 小结

本章针对比赛中经常出现的运动死锁情景提出了自己的解决方案，即利用模糊控制来解决该问题。首先给出死锁的定义，然后阐明了解决运动死锁问题的重要性。提出了我们的解决方法——模糊控制，最后利用 Wang-Mendel 方法构造出一个面向死锁问题的双层模糊控制器。

4.5 小结

以后即可根据输入输出产生模糊规则。我们利用数据分析系统检测到死锁情景得到死锁时候的数据输入，然后将其可视化后利用投票法得到输出。在得到输入输出数据对后，便可产生模糊规则库，之后就可以建立起了一个基于单值模糊器、乘积推理机、中心平均解模糊器和三角形成员函数的解决死锁问题的模糊控制器。

图 4-13 Aot 4-15 Ballx 4-16 Out

Fig.4-13, 4-15, 4-16 Membership functions of Aot, Ballx and Out

4-13 Aot 4-15 Ballx 4-16 Out

图 4-13 Aot 4-15 Ballx 4-16 Out

Fig.4-13, 4-15, 4-16 Membership functions of Aot, Ballx and Out

图 4-13 Aot 4-15 Ballx 4-16 Out

Fig.4-13, 4-15, 4-16 Membership functions of Aot, Ballx and Out
第五章 实验与分析

本章针对第四章给出的四种分析功能分别给出了实验结果。其中运动性能分析和技战术自动统计属于赛前赛后的离线分析，而运动解锁属于在线的决策过程。基于内容的比赛视频检索支持可视化的策略分析。

5.1 机器人运动性能分析

对机器人运动性能的掌握是关键的。只有了解小车的性能才能精确地进行路径规划等问题，并且还可以据此来为数据预处理中的线速度约束和角速度约束提供速度阈值。下面是实验结果。

图 5-1a 和 5-1b 是我们对机器人进行直线速度校正的结果。图 5-1a 是校正前机器人的运动轨迹，图 5-1b 是校正后机器人的运动轨迹。

图 5-2a 和 5-2b 是校正前机器人的运动轨迹，图 5-2b 是校正后机器人的运动轨迹。

Fig.5-1a, 5-1b Trajectory of the robot before and after modification

Fig.5-2a, 5-2b Trajectory of the robot before and after modification
图 5-1a 是对 1 号机器人进行直线校正前小车双轮速度均为 50 时的运动轨迹，其偏离直线轨迹为 20 cm, 图 5-1b 是进行直线校正后的轨迹，其在直线轨迹上的偏移是 3 cm。图 5-2a 是对 2 号机器人进行直线校正前小车双轮均为 80 时的轨迹，其在直线轨迹上的偏移为 24 cm。图 5-2b 是进行校正后的轨迹，其在直线轨迹上的偏移为 10 cm。图 5-3a 是对 3 号机器人进行直线校正前小车双轮速度均为 3 cm/T，图 5-3b 是进行直线校正后的轨迹，其在直线轨迹上的偏移为 45°/T℃。

5.2 模糊解锁的实验

为了验证第四章中解决运动死锁问题的模糊控制器的有效性，我们做了两种实验。第一种是基于全局视觉反馈的足球机器人比赛数据分析系统进行的离线实验，第二种是基于仿真模拟的在线实验。

（一）实验条件
为了进行第一种实验，我们搜集了 10 比赛数据，其中包含了 102 个死锁数据。比赛数据主要来源有机器人大赛如 2003 年马斯特杯全国机器人大赛和其他学校之间的一些邀请赛如北工大队内训练比赛等等。当然，这些数据并不能代表全部。为了更充分的验证我们的死锁控制器的有效性，我们还进行了利用自己开发的仿真平台模拟在线实验。首先给两队以相同的比赛策略，然后给黄队增加解决死锁的模糊控制策略。当然，为了检验模糊控制器的目的和节省时间，我们可自己配置死锁局面，然后检验黄队的模糊控制器的是否有效和合理。我们总共进行了 250 次的实验。

（二）实验步骤
第一种实验的主要步骤是利用基于全局视觉反馈的足球机器人比赛数据分析......
关于在GVCD中检测死锁情景的方法如下

(1) 机器人不动的情景

```c
for (i=0; i<NumofData; i++)
{
    for (time=i; time<i+DEADCYCLE; time++)
    {
        if 机器人位置不变
            continue;
        
        i = time;
        break;
    }
}
if (time==i+DEADCYCLE)
    time 时的数据为死锁数据
    记录此时的数据
```

(2) 机器人和对方机器人因为争球僵持的局面

```c
for (i=0; i<NumofData; i++)
{
    for (time=i; time<i+DEADCYCLE; time++)
    {
        if 机器人最靠近球的对方机器人和球三者之间的距离相对不变
            continue;
        
        i = time;
        break;
    }
}
if (time==i+DEADCYCLE)
    time 时的数据为死锁数据
    记录此时的数据
```

(3) 机器人由于策略和对方机器人僵持的局面

```c
for (i=0; i<NumofData; i++)
{
    for (time=i; time<i+DEADCYCLE; time++)
    {
        if 机器人和对方机器人的距离相对不变
            continue;
        
        i = time;
        break;
    }
}
if (time==i+DEADCYCLE)
    time 时的数据为死锁数据
    记录此时的数据
```
继续；

```c
continue;
{
    i = time;
    break;
}
}
if (time == i + DEADCYCLE)
    time  

DEADCYCLE  

DEADCYCLE  

DEADCYCLE  

其中  

DEADCYCLE  

DEA
第二种实验的结果是189种撤退，61种不撤退，具体如图5-7所示根据撤退后几十个周期的情形判断其中合理的结果有239种，合理率为95.6%。
图 5-7 仿真实验结果统计

其中横坐标代表模糊控制的结果，纵坐标表示每个解锁结果的次数。

图 5-8 到 5-11 是一些实验结果，关于图 5-8a 中的死锁场景，模糊控制器的决策结果是不解锁，如图 5-8b 所示。如果撤退的话，会对本方的防守不利。对于图 5-9a 中的死锁情景，死锁控制器的决策结果是撤退，图 5-9b 是 20 个周期后的情景。可以看出解锁的结果有利于局面流畅和保护机器人硬件。关于图 5-10a 的死锁情景，死锁控制器的决策结果是撤退，图 5-10b 是 30 个周期后的情景。可以看出解锁的结果有利于防守。死锁控制器的对图 5-11a 中死锁情景的决策结果是撤退，图 5-11b 是 10 个周期后的情景。可以看出解锁的结果有利于进攻。
Fig. 5-8b Do not retreat

Fig. 5-9a Motion deadlock at T moment

Fig. 5-9b Scene after solving the motion deadlock
Fig. 5-10a: Motion deadlock at T moment

Fig. 5-10b: Scene after solving the motion deadlock

Fig. 5-11a: Motion deadlock at T moment
实验分析
可以看出第一层用到了27条规则，第二层有128条规则，整个模糊控制器用到155条规则。假如采用传统的算法的话，将用到3456条规则，对于一个输入会激活256条规则，这样将很难建立模糊控制器。使用分层控制器后对一个输入最多只会激活40条规则，而且经过实验证明，比赛中有很多情景只激活了8条规则。关于有些情景解锁无效的原因来源于为了简化模糊规则，模糊集合划分比较简单，导致少部分死锁情景不能有效处理。不过对于实际比赛场上出现的死锁情景，我们所构造的控制器解锁的有效率平均为95%，能够达到比较满意的控制效果。

通过对运动死锁问题的解决可以对模糊控制系统以下特点有更深的了解：无需知道被控对象的数学模型，是一种反映人类智慧思维的智能控制，易被人们所接受，鲁棒性好。5-3 技战术自动统计功能

(四) 数学模型

在对GVCD进行预处理的基础上，我们实现了技战术的自动统计功能，主要包括以下几项：进球，射门，犯规，死锁次数，攻势，控球时间，等等。图5-12
图5-13 分别是两场比赛的统计结果。经过与手工统计得到的正确结果相比较，自动统计结果的正确率达到80%。

图5-12 统计结果 1
图5-13 统计结果 2

(二) 实验分析

统计结果不准确的情况主要来源于犯规和攻势的统计，主要是犯规时的情景比较复杂，而关于攻势的统计方法比较简单。

5.4 基于内容的比赛视频检索

为了检验我们的比赛数据系统的关于基于内容的比赛视频的检索的功能，我们同时对一场比赛进行DV录像和GVCD数据记录，总共得到5场比赛的样本，并在赛后对比赛数据文件进行了时间对齐，建立起和视频文件对应的时间对齐文件。利用我们的分析功能在GVCD中进行检测射门和进球，具体检测的方法我们在第三章中已经详细介绍过了，这里就不再赘述。最后得到这5场比赛中双方的射门次数是102:100，进球个数分别为40:37，而实际从DV录像中得到双方的射门次数是118:115，进球个数分别为42:38。可以看出结果令人满意。

基于内容的比赛视频检索主要利用时间上的映射实现，在GVCD数据中，我们记录下了每个周期的序号，其中周期的间隔时间是16ms，因此当我们检测到某个射门动作发生的周期号为T时，则其实际发生的时间是(T*16)/1000秒，则可对应在比赛视频录像中找到该射门镜头。
图5-14a 射门场景
图5-14b 比赛视频录像中的射门场景

图5-15a 射门场景
图5-15b 比赛视频录像中的射门场景

图5-16a 进球场景
图5-16b 比赛视频录像中的进球场景
通过实验表明，如果记录比赛数据的时间和进行DV录像的时间协调一致，即建立起正确的时
5.5 结论

实验结果是解锁合理率为95%左右。关于基于内容的视频检索功能，实验结果受到GVCD与DV记录时间是否一致的影响。在二者一致的情况下，视频中80%的待检测的场景能够由分析系统检索出来。
第六章 总结及展望

本文针对目前足球机器人比赛缺乏精确定量分析的问题开发了一个基于实时全局视觉的足球机器人比赛数据分析系统。为了实现该系统，首先分析了全局视觉系统的原理，然后对全局视觉系统进行了一些改进，主要包括颜色模型的转换、运动方向和区域的预测、处理区域的选择、局部搜索与全局搜索的结合。改进后的视觉系统识别更稳定，减少了利于赛前的调试时间。

在对全局视觉系统进行改进的基础上得到了比赛数据（GVCD），通过线速度约束、角速度约束、轨迹平滑性约束和重叠性约束等四个约束条件对GVCD进行了预处理。处理后的数据回放效果更接近真实，且有利于后面的比赛数据分析。

该比赛数据分析系统共实现了以下几个功能：对机器人运动性能的分析，这有利于精确地控制机器人的运动；面向死锁问题的模糊控制方法，对比赛中经常出现的死锁情形进行决策；技战术自动统计，便于从整体上了解策略的实行效果；基于内容的比赛视频数据检索，便于迅速找到关键场景进行分析和精彩回放。

实验部分验证了数据分析功能的有效性。作为一个足球机器人比赛数据分析系统，今后还有更多的工作需要深入展开，主要包括：

(1) 视觉系统识别精确性的提高，现在的视觉系统的识别速度快，识别效果较稳定，但识别的效果不够精确，位置一般都有1cm的误差，角度有7度的误差，因此提高系统的识别精度成为一个很重要的问题。

(2) 提高GVCD的预处理能力，目前利用了四个约束条件对物体的GVCD进行了预处理，但对机器人的轨迹平滑性约束的实现比较简单，应考虑对其改进。

(3) 进一步扩展比赛数据分析功能，开发比赛数据分析系统的目的就是为了对双方的策略系统进行分析和研究，自动进行策略的发现成为下一步的目标。


[3] 刘宏、查红彬、林飞，“基于全局视觉反馈和运动轨迹约束的多智能体比赛数据分析系统”，《中国人工智能进展》2003。


致谢
首先感谢我的导师刘宏副教授对我的论文做了细致入微的指导从论文的选题实现创新点都给了我很多的启发。三年来刘老师无论在学习方面还是生活方面都对我们非常关心使我养成了良好的科研习惯和生活习惯。感谢我的导师查红彬教授他严谨的治学态度和渊博的知识给我留下了深刻的印象对我产生了积极的影响。查老师对本论文的选题和实现也提出了很多宝贵的意见。这些都使我受益匪浅。感谢我的师兄弟硕士研究生皮文凯同学陈可明同学周杰同学冯所前同学余泽同学邓学智同学董宁同学博士生武宇文同学梁国远同学和王君秋同学对我在生活和研究中的帮助使得我的论文能够顺利完成。感谢北京大学信息科学中心的老师们给我提供了知识的传授和技术指导。最后要感谢我的父母和女友感谢父母这二十多年来对我的养育和无私奉献感谢女友对我在写作论文时的鼓励。


[34] 洪炳熔, “强化学习在机器人足球中的应用”, 计算机应用研究 no.6, pp.79-81, 2002.


北京大学硕士学位论文
基于实时全局视觉的足球机器人比赛数据分析系统

原创性声明
本人郑重声明
所呈交的学位论文
是本人在导师的指导下
独立进行研究
工作所取得的成果
除文中已经注明引用的内容外
本论文不含任何其他个人或
集体已经发表或撰写过的作品或成果
对本文的研究做出重要贡献的个人和集体
均已在文中以明确方式标明
本声明的法律结果由本人承担

论文作者签名
日期

学位论文使用授权说明
本人完全了解北京大学关于收集
保存
使用学位论文的规定
即
按照学校要求提交学位论文的印刷本和电子版本
学校有权保存学位论文的印刷本和电子版
并提供目录检索与阅览服务
学校可以采用影印
缩印
数字化或其它复制手段保存论文
在不以赢利为目的的前提下
学校可以公布论文的部分或全部内容
保密论文在解密后遵守此规定

论文作者签名
导师签名
日期