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Abstract—Stochastic Heavy Ball method (SHB) has been widely
used in various machine learning and deep learning tasks due to
its superior generalization performance. However, a large number
of effort need to be spent in tuning the learning rates of SHB,
which is costly and inefficient in practical applications. Towards
this end, this paper proposes the Stochastic Euler Heavy Ball
method (SEHB), which simultaneously achieves good generaliza-
tion like SHB and obtains rapid convergence. Our method adopts
new adaptive learning rates which is different from classical
adaptive methods like Adam. Convergence analysis is discussed in
both convex and non-convex situations. Furthermore, we conduct
numerical experiments and deep learning experiments to test the
performance of SEHB. Empirical results demonstrate that our
method shows better generalization performance than classical
stochastic optimization methods such as SHB and Adam.

Index Terms—Stochastic optimization, SGD, Adam, Heavy ball

I. INTRODUCTION

Modern neural networks are typically trained with first-order
gradient methods [1]-[3]. Remarkably, Stochastic Gradient
Descend (SGD) is the main first-order methods. The method
is often trained in the form of mini-batch SGD in order to
meet the requirements of computing power, and achieve good
generalization performance [4], [5]. However, SGD has the
following main drawbacks. First, SGD chooses the negative
gradients of loss functions as descent directions which would
yield a slow convergence near the local minima. Second, SGD
scales the gradients uniformly in all directions which may yield
poor performance as well as limited training speed. Last but
not least, when applied to machine learning and deep learning
tasks, SGD is painstakingly hard to tune the learning rates
decay scheduling manually. However, one has to decay learning
rates as the algorithm proceeds in order to control the variances
of stochastic gradients for achieving convergence due to the
high-dimensional non-convexity of machine learning and deep
learning optimization problems.

To tackle aforementioned issues, considerable efforts have
been spent and several remarkable variants have been proposed
recently. Accelerated schemes and adaptive methods are two
categories of dominant variants. Accelerated schemes, such
as stochastic heavy ball (SHB) [6] and stochastic Nesterov’s
accelerated gradient (SNAG) [7], employ momentum to adjust
descent directions which achieve faster convergence and better
generalization performance than other variants. However, they
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also suffer from the third drawback of SGD, and thus one need
to spend many efforts on tuning and decaying learning rates
manually. On the other hand, adaptive methods aim to alleviate
this issue which automatically decay the learning rates and
scale them non-uniformly. The first prominent algorithm in this
line of research is AdaGrad [8], which divides element-wisely
accumulative squared historical gradients. AdaGrad performs
well when gradients are sparse, but its performance degrades in
dense or non-convex settings, which is attributed to the rapid
decay in learning rates. Towards this end, several methods,
proposed by [9]-[11], scale gradients down by square roots of
exponential moving averages of squared historical gradients
(called EMA mechanism). This mechanism is very popular
and some famous variants, including AdaDelta [9], RMSprop
[10] and Adam [11], are based on it. Particularly, Adam is
a combination of momentum and EMA mechanism which
converges fast in the early training phases and is easier to
tuning than SGD, becoming the default algorithm leveraged
across various deep learning frameworks.

Despite Adam’s popularity, there also have been concerns
about their convergence and generalization performance. In
particular, Adam and even most EMA based methods, may
not converge to the optimal solution even in simple convex
settings [12], which relies on the fact that effective learning
rates of EMA based methods can potentially increase over time
in a fairly quickly manner. For convergence, it is important to
have the effective learning rates decrease over iterations, or at
least have controlled increase [13]. This problem persists even
if the learning rate scheduling (decay) is applied. Recently,
considerable efforts have been spent on improving EMA
based methods [12]-[17] to avoid this issue and narrow
the generalization gap between EMA based methods with
SGD. However, despite these efforts, one pursuing the best
generalization ability of models has to choose SGD as the
default optimizer rather than Adam based on the fact that
there is not enough evidence to show that those Adam-type
methods can get close to or even surpass SGD in general tasks.
Therefore, a natural idea is whether it is possible to develop
a new adaptive method different form EMA based methods,
which can overcome aforementioned issues and obtain even
better generalization than SGD. However, to the best of our
knowledge, there exists few efforts on proposing new adaptive
mechanisms whose starting points are different form EMA
mechanism.



Contributions In the light of this background, we list the
main contributions of our paper.

e We propose a new adaptive method, called Stochas-
tic Euler Heavy Ball method (SEHB) which achieves
new adaptivity different from classical adaptive methods.
SEHB overcomes aforementioned drawbacks of SGD and
achieve better generalization than SHB and other popular
adaptive methods.

e We theoretically analyze the convergence of SEHB in
both convex and non-convex settings. In Online convex
optimization framework, SEHB shows a O(v/T) regret
bound; In stochastic non-convex optimization, our method
shows a O(logT/v/T) convergence rate. The above
bounds are at least comparable and not less than bounds
of Adam-type methods.

e We conduct extensive empirical experiments for SEHB and
compare with several representative methods. Empirical
results show that SEHB achieves fast convergence as
Adam-type methods and shows the best generalization
performance in most tasks.

The rest of this paper is organized as follows. In Section
2, we list a few very closely related work about SGD and
Adam-type methods. The main contribution SEHB is described
in Section 3. Section 4 and Section 5 show the properties
of SEHB from both theoretical and empirical perspectives
separately.

II. RELATED WORK

The literature in stochastic methods is vast and we review
a few very closely related work on improving SGD or Adam.
These proposed methods can simply be summarized into
two families: EMA based methods and others. For EMA
based methods, many efforts have been spent on closing the
generalization gap between Adam and SGD family. AMSGrad
[12] controls the increasing of effective learning rates over
iterations, AdaBound [14] clips them, Yogi [13] considers
the mini-batch size, PAdam [15] modifies the square root,
RAdam [16] rectifies the variance of learning rates, AdamW
[18] decouples weight decay from gradient descent, AdaBelief
[17] centralizes the second order momentum in Adam. To
our best knowledge, there exists several methods achieving
different adaptivity from Adam-type methods in SGD. AdaGD
[19] focuses on the local geometry and use the gradients of
the latest two steps to adaptively adjust learning rates, which
has a convergence only depending on the local smoothness in
a neighborhood of the local minima. Besides, AEGD [20] is
closest to our work which uses the same composite function
of the loss with ours: 4/ f(z) + ¢ where f is the loss and c is
a constant s.t. f(x) + ¢ > 0 for all z in the feasible region.
However, the intuition for AEGD which is far different from
our method is to realize a gradient descent with the stable
energy which is defined as the above composite function of the
loss. Note that the energy of AEGD equals the definition just in
the first step and updates in a monotonous way as the algorithm
proceeds. Hence, the stable energy seems meaningless because
that it unconditionally decrease over iterations.

III. ALGORITHM

In this section, we propose a new algorithm SEHB for
achieving new adaptivity in SHB which is far different from
EMA mechanism. Specifically, the motivation for SEHB is
that the loss can help to adjust learning rates over iterations
and we decompose the current gradient into a scaled gradient
and a loss based vector which guides us to achieve adaptivity
in SHB.

Notation For a vector 6 € R%, we denote its i-th coordinate
by 0;; we use 0, to denote 6 in the ¢-th iteration and use 6, ; for
the i-th coordinate of € in the t-th iteration. Furthermore, we
use || - || to denote l-norm and use || - ||oo to denote [o-norm.
Given two vectors v, w € R4, we use vw to denote element-
wise product and use v? to denote element-wise square; we
use - to denote element-wise division.

A. Gradient Decomposition

The motivation for SEHB is that the loss can help to adjust
learning rates over iterations. As the algorithm proceeds, typi-
cally one need to adjust the learning rates for convergence. Thus,
the learning rate decay scheduling technique is often applied
into the training process. Note that both momentum based
methods and adaptive methods benefit from the combination
with the learning rate decay scheduling technique. Hence,
adjusting learning rates according to the loss information is
feasible. SEHB employs a decomposition of gradients to access
the loss information.

Consider a composite function of the loss f(z):

9(x) =/ f(z) +c, (1)

where the objective loss f(x) is a lower bounded function and
¢ > 0is a constant s.t. f(z)+c >0, Yz € X C R? Take the
derivative of g(z) and we can decompose the gradient V f(z)
into the product of two terms

Vf(x) =29(x)Vg(z), 2)

where V f(x) and Vg(z) are the gradient of f(x) and g(x)
respectively. Note that g(x) which has the same monotonicity
with f(z) includes the current information of the loss, and
Vg(x) is a scaled version of Vf(z) with a factor 2g(z)
which is a constant for a certain z. Thus, —Vg(z) is also
a descent direction because we have —Vg(z)Vf(z) =
—(Vf(x))?/2g(x) < 0 where g(x) > 0, Vo € X. In
conclusion, we decompose the gradient of the loss f(x) into
a surrogate gradient Vg(z) which is a descent direction for
optimizing f(z) and a loss scalar g(x). SEHB adjusts learning
rates adaptively according to the loss scalar.

B. Our Method

Based on the above decomposition, we show the update rule
of SEHB. To determine an optimizer, all we need are calculating
the learning rate (step size) and searching the update direction.
For example, the update scheme of vanilla SGD is:

3)

Ti41 = Tt — TIVf(CUt)a



where x4y, 2 € R¢, 7 is a constant learning rate, V f(z;) is
the gradient at the time step ¢ and —V f(x) is the steepest
descent direction.

As mentioned before, the gradient V f(z) is divided into a
loss scalar and a scaled gradient. We introduce v to update the
loss scalar and have

v = Vi1 + Vg(x) (41 — 1),
Ti41 = Ty — nvtVQ(l’t)7

“4)

where the initial vector vg; = g(x¢), ¢ = 1,2,--- ,d. Note that
applying the loss scalar g(x), which is the second term of the
gradient decomposition, directly results in two disadvantages:
First, g(z) is a scalar for a certain « so that we fail to achieve
a non-uniform adaptive learning rate. Besides, if so, the update
rule of x would exactly equal to SGD or SHB. Therefore,
the first formula in Equation 4 employs the Euler’s method
to approximate g(z) linearly to achieve the approximate loss.
The aforementioned update rules directly yield

Vi—1
Vg =5
1+ 2n(Vg(z))

where we note that v, decreases monotonically, similar to that
of AEGD. Differently, we employ the heavy ball scheme of
gradients to accelerate convergence and have the following
update rule of the direction

(&)

my = ymy—1 + Vg(x), ©)
Tr41 = T — NUMy,
where v € (0,1) is a momentum constant.

Equation 5 and 6 are all update schemes of our Stochastic
Euler Heavy Ball method (SEHB). Note that v and m, two
terms from the decomposition of the gradient, help to achieve
adaptive learning rates and accelerate the convergence SEHB.
The pseudo code is showed in Algorithm 1.

Algorithm 1 SEHB (good initialization: ¢ =
{0.9,0.99}, n = 0.03)

Input: z; € X C RY, step size 7, ¢, momentum ~
Initialize mo,;, =0, vo; = /f(z1) + ¢, i=1,2,--- ,d
fort=1to T do

g Vf(@e)/2¢/f(a1) +¢

vy = ve_1/(1+ 2ng?)

my < YMy—1 + g

Tyl < Ty — 2nuemy
end for

1, v =

IV. CONVERGENCE ANALYSIS

We discuss the convergence of SEHB in both convex and
non-convex situations. The convergence under the condition
of convex objective functions is showed in the online convex
optimization framework [8], [12], [21], [22] which is similar to
Adam [11], AMSGrad [12], AdaBound [14] and AdaBelief [17].
Furthermore, we analyze the convergence in the stochastic non-
convex optimization problem, which is similar to the previous
work [17], [23]. This situation is more in line with actual

scenarios of machine learning and deep learning tasks. To
avoid the repetition of notation, we use [/ instead of g as the
composite function of f.

A. Online Convex Optimization

In online optimization, we have a loss function f; : X — R.
After a decision z; € X is picked by the algorithm, we have
the following regret to minimize:

T T

T) = — mi . 7
R(T) Zoft(mt) gél;(l;ft(x) (7
The standard assumptions [8], [12], [21], [22] in the setting of
online convex optimization are as follows:

Assumption 1. (1) X C R? is a compact convex set; (2) f; is
a convex lower semi-continuous (Isc) function, g, € 0 fi(x);
(3) D = max, yex ||z — y||, G = maxy ||g¢]|.

We propose the following lemma:

Lemma 1. f; is a lower bounded function and ¢ > 0 is a
constant s.t. fy(x)+c> 0,2 € X. Let l;(x) = /fe(x) + ¢ If
ft has bounded gradients, then 1, has bounded gradients too
and is bounded in the feasible regions.

Remark 1. The above lemma shows that two terms from the
decomposition of the gradient V f(z) are both bounded. In
particular, the assumption (3) in the standard assumptions 1
yields ||Vi(z:)|| < G, |le(xe)] < L, x4 € X.

Therefore, we can get the following assumptions for SEHB
which are entirely yielded from the standard assumptions 1:

Assumption 2. (/) X C R is a compact convex set; (2) fi is
a convex Isc function, l; = /f +¢, ¢>0; (3) ||z —y|| < D,
||Vlt(xt)|\ <G, lt(l‘t” <L, x €X.

The key results are as follows:

Theorem 1. Under the Assumption 2, let v € (0,1), v =
AL and n, = %, n > 0, SEHB has the following bound
on the regret:

_LD*VT ¢ L, LD
VIS~ -, LD
T odp & (122

+77C’721L(_17+L)(2\FT 1).

R(T)
®)

Remark 2. Theorem 1 implies the regret of SEHB is upper
bounded by O(\/T) similar to Adam [11], AMSGrad [12],
AdaBound [14] and AdaBelief [17]. Besides, the condition of
7 can be relaxed to ~v; = v/\/t and still ensures a regret

bound of O(V/T).

B. Stochastic Non-convex Optimization

We discuss the convergence in the stochastic non-convex
learning which is more in line with actual scenarios of
machine learning and deep learning tasks than the online
convex optimization. The standard assumptions [17], [23] are
as follows:



Assumption 3. (1) f is lower bounded and differentiable,
IV f(z) =V Iyl < L||x—yl||,Vz,y; (2) The noisy gradient
is unbiased, and has independent noise, i.e. g(t) = V f(0;)+,
E¢ =0, G L ¢, V5 €N, t#j;(3) At step t, the algorithm
can access a bounded noisy gradient, and the true gradient is
also bounded, i.e. ||V f(0,)|| < H, ||g¢|]| < H, ¥t > 1.

Similarly, the above assumptions yield the following assump-
tions for SEHB according to Lemma 1:

Assumption 4. (1) f is lower bounded and differentiable,
IVf(x) =V )| < L||x—vyl|,Vx,y; (2) The noisy gradient
is unbiased, and has independent noise, i.e. g = V f(0;) + (,
E¢ =0, L ¢, Vt,5 €N, t#j;(3) At step t, the algorithm
can access a bounded noisy gradient, and the true gradient
is also bounded, i.e. ||l;|| < L, ||g:]| < G, g+ is the noisy
gradient of ly = \/fr + ¢, Vt > 1.

The key result is as follows:

Theorem 2. Under the Assumption 4, let v < v < 1, ||vp|]1 >

€ and n; = %, n > 0, SEHB satisfies

L2
nE(|VFO)I?) <——=(C1L*n?*G?*(1 +1logT
min (II f(t)H)_e??\/T( 1L "GE(1 + log T)
+ Cadn + CdL + Cy ).

©))

where C1, Cy, C3 are constants independent of d and T, Cy
is a constant independent of T.

Remark 3. Theorem 2 implies that SEHB has a O(log T /\/T)
convergence rate in the stochastic non-convex situation which
is similar to Adam-type methods [17], [23]. Besides, Theorem
3.1 in [23] needs to specify the bound of each update, but
SEHB needs not. The proof follows the general framework in
[23], and it’s possible the above bound is loose. A sharper
convergence analysis remains open.

V. EXPERIMENTS

In this section, we study the generalization performance of
our methods and several representative optimization methods.
Except SGD with momentum (SHB), we additionally test
two families of optimizers including Adam-type methods and
other adaptive methods. The former includes Adam, AMSGrad,
AdaBound, AdaBelief and the latter includes AEGD and our
method SEHB. We conduct experiments on the two classical
high-dimensional functions and popular deep learning tasks for
testing the performance in thestochastic situation. Particularly,
several neural network structures will be chosen including
multilayer perceptron, deep convolution neural network and
deep recurrent neural network. Concretely, we focus on the
following experiments: multilayer perceptron (MLP) on MNIST
dataset [3]; ResNet-50 [24] and DenseNet-121 [25] on CIFAR-
10 dataset [26]; LSTMs on Penn Treebank dataset [27].

A. Details

Hyperparameters For SHB and AEGD, we employ the
grid search for learning rates in {1,0.5,0.3,0.1,0.01}. We set
momentum ~ in SHB to the default value 0.9. Note that reported

in [17], the best learning rate for SHB is 30 for LSTMs on Penn
Treebank dataset, and we follow this setting. For Adam, AMS-
Grad, AdaBound and AdaBelief, we employ the grid search for
learning rates in {0.1, 5e—2, le—2, 5e—3, le—3}. We turn over
B1 values of {0.9,0.99} and 5 values of {0.99,0.999}. For
other parameters in above Adam-type methods, we follow the
setting reported in [14], [17] for achieving the best performance
on CIFAR-10 and Penn Treebank dataset and use the default
values for other experiments. For SEHB, we use the default
value of hyperparameters, the default learning rate for CIFAR-
10 and a warm-up learning rate for LSTMs.

Numerical Experiments We conduct numerical experiments
on the two classical high-dimensional functions, Extended
Powell Singular function and Extended Rosenbrock function,
to test the performance of our method in a convex and non-
convex function respectively. The former is a high-dimensional
convex function, but the Hessian has a double singularity at
the solution so that in the global optimization literature this
function is stated as a difficult test case. Extended Powell
Singular function is as follows:

N/4

f(x) = Z ((9541'73 + 10245—2)° + 5(z4i—1 — 4i)?
i=1
+ (@4i-2 — 2x45-1)" + 10(z45-3 — $4i)4),

where we set N = 100 and the initial point is
(3,-1,0,1,3,-1,0,1,---,3,—1,0,1)7. The exact optimal
solution is (0,0,---,0)7 and the exact minimum value of

Extended Powell Singular function is 0. The latter, Extended
Rosenbrock function, is a famous high-dimensional non-convex
function in optimization. It has the following form:

N/2
) =7 (10023, — w2)? + (w2i — 1)%)
i=1

where we set N = 100. We start with initial point zg =
(-1.2,1,-1.2,1,--- ,—1.2,1)T to find the optimal solution.
The exact optimal solution is (1,1,---,1)7 and the exact
minimum value of Extended Rosenbrock function is 0. We
test Adam and our method SEHB in these two functions and
the learning rates are le — 2 for Adam and le — 4 for SEHB.
The results are reported in Figure 1(a). We note that SEHB
converge faster than Adam with even smaller learning rates.

MLP on MNIST We conduct the experiment to test
the performance of aforementioned optimizers with MLP
on MNIST. We follow the experiment settings reported in
AdaBound [14]. MLP is a fully connected neural network
with only one hidden layer and total epoch is 100. Figure
2(a) shows the empirical result. Note that all optimization
algorithms achieve a test error below 2% and our method
SEHB and AMSGrad achieve slightly better performance than
other methods on the test set.

ResNet-50 and DenseNet-121 on CIFAR-10 CIFAR-10 is
a more complex dataset than MNIST. We use more advanced
and powerful deep convolution neural networks, including
ResNet-50 and DenseNet-121, to test various optimization
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Fig. 3. Performance of various optimizers

methods in this classification task on CIFAR-10 dataset. We
employ the fixed budget of 200 epochs, set the mini-batch size
to 128. Figure 2(b) and 2(c) show the empirical results. Code
is modified from the official implementation of AdaBound.
As expected, the overall performances of each algorithm on
ResNet-50 are similar to those on DenseNet-121. We note that
SEHB shows the best generalization performance on DenseNet-
121. For ResNet-50, the error of SEHB is higher than that of
Adam with a margin 1.3%; For DenseNet-121, SEHB surpasses
Adam with a margin 1.7%. We find that classical adaptive
methods show rapid descent in the early period of training

(b) two layers LSTM on PTB
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(c) three layers LSTM on PTB

in popular NLP tasks. The lower is better.

such as Adam. However, they show mediocre generalization
ability on the test set. The empirical results show that our
method overcomes the above drawback and achieves even
better generalization performance than SHB.

LSTMs on Penn Treebank dataset We test our method on
Penn Treebank dataset with one-layer LSTM, two-layers LSTM
and three-layers LSTM respectively. We follow the setting of
experiments in AdaBelief [17]. One difference is that AdaBelief
improves these experiments by setting learning rate scheduling
at epoch 100 and 145 in their official implementation. Except
our methods, the results of other methods are reported in



AdaBelief. Code is modified from the official implementation
of AdaBelief. The perplexities (ppl) of methods are reported
in Figure 3(a), 3(b) and 3(c) except AEGD and AMSGrad due
to their worse performances. To our knowledge, AdaBelief has
been the best optimizer on Penn Treebank dataset. Note that our
method SEHB achieves the similar performance to AdaBelief
in all three experiments: For one-layer LSTM, SEHB surpasses
AdaBelief and achieves the lowest perplexity; For two-layers
LSTM, SEHB and AdaBelief show the best performance and
SEHB is higher than AdaBelief by a margin 0.28; For three-
layers LSTM, SEHB shows the lower perplexity than other
methods except AdaBelief and is higher than AdaBelief by a
margin 0.73. Considering perplexities equal to e/°** the gap
between AdaBelief and SEHB is very small.

VI. CONCLUSION

We have introduced SEHB, a simple and computationally
efficient adaptive algorithm for non-convex stochastic optimiza-
tion. This method is aimed towards large-scale optimization
problems in the sense of large datasets and/or high-dimensional
parameter spaces such as machine learning and deep neural
networks. The practical intuition and excellent performance of
SEHB show that our method is worth further research.

Despite excellent performance of our method, there still
remains several directions to explore in the future:

e First, we prove a O(logT/+/T) bound of our method
SEHB in non-convex setting. However, empirical results
show that the generalization performance of SEHB is
better than many methods with a similar bound such
as Adam. A tighter regret bound of SEHB needs to be
explored in the future.

e Furthermore, as mentioned before, SEHB and Adam can
be integrated with each other. This topic remains open.

o Finally, several works aim to find a new way to generate
adaptive learning rates different from Adam-type methods.
Thus, as this kind of works increase, how to measure
the quality of adaptive learning rates is more and more
important. However, there are few works on this topic.
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APPENDIX
A. Proof of Lemma 1

Proof. Because l;(x;) = \/W, 2, € X, then
V fi(we) = 20 (2¢) Vig(24).

If V fi(x¢) is bounded, I;(z:)Vi:(z:) is bounded. Therefore,
at least one of [;(x;) and Vi;(z;) is bounded.

First, consider I;(x) is bounded and VI;(z;) is unbounded,
the only possible case is that

lt(xt) — 0, HVlt(th)H — OQ.

Obviously, this case doesn’t exist because if l;(z:) — 0, I
must have gradients with a limit of 0.

Second, consider Vi (z;) is bounded and [;(z;) is un-
bounded, the only possible case is that

li(x) = 00, |[|Vi(x)|[ — 0.

However, if I;(z;) has gradients with a limit of 0, {;(z;) must
be finite. Thus, this case doesn’t exist too.

Finally, the only case is that I;(z;) is bounded and VI;(z;)
is bounded too. This proves that if f; has bounded gradients,
then [; has bounded gradients too and is bounded in the feasible
regions. O

B. Proof of Theorem 1
Proof. We first replace the element-wise product with the
dialog matrix and obtain

Ti41 = Tt — 277Vtmt,

where V; = diag{v*} and V; is monotonic decreasing. We aim
to minimize the following regret:

T T
R(T) =3 filw) —min}  fix).

Let * € X be the optimal solution, the above regret is

T T

R(T) = fulm) — th(l"*)

7

< <Vft($t)>$t—$*>~

-

Il
-

K2

Because
_1 _1
Vi3 (wepr — )P < IV, % (2 — 20 Vimy — 27)||?
_1 1
=[|V; 2 (e — 21> + 407 ||V || — dney(me—a, e — 2%)
*4T]t<v1t(It),It *I*>,
we have
<Vlt($t),l‘t —$*>
1 _1 N _1 .
Sf(HVt 2y — )| = |IV; 2 (o1 — 2)|P)
Tt

1
+ |V mel | — y{my—1, z — x*)
1 —% *\ (12 _% *\[|2
S UVe (e =2 = [IV; ® (@ — 27)[F)
4l

1 2
e[V mal |2 + %Hwt — |2+ el e |2,
t

where the last inequality follows Cauchy-Schwarz inequality
and Young’s inequality. Thus, we obtain

li(y)
47],5
_ 1 1
= |V, 2 (g1 — 2)P) + nele (@) [|[V,2 ||
7li(@e)
Tt

(V fulwn), i — o) < (V72 (2, — )|

+ e — %> + mele ()| [ma—a | |,



and the regret is as follows:

Z

T 9
1 Li(z
-3 o) Vi +Z”;“)||
=1 =1 t

T
+ > meli(we)fme |

t=1

é *\ 12 *% *\ 12
(e —a")I" = IV, 2 (@eq1 —27)]7)
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We divide the right formula into three parts:
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Consider the part 1 and apply Assumption 2:
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Then, the part 2 is as follows:
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Finally, we give the upper bound of the part 3 by applying
Assumption 2:
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Hence, we get the final regret bound:
LD2\/T ¢ | LD
R(T) < Z’UT,i (1 _ /\2)2
G2 14+ L
+ w(z\/» —-1).
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C. Proof of Theorem 2

Proof. The proof follows the general framework in [23]. In
particular, we follow the proof in [23] and use the Theorem
3.1 in [23]. We note that Theorem 3.1 in [23] gives the
convergence bound for generalize Adam [23]. However, this
general framework needs no EMA mechanism, i.e. squared
gradients and represents more general adaptivity which uses
first order gradients. SEHB belongs to this general framework
with 1/,/v; in this general framework corresponding to v; in
SEHB. Therefore, we can apply the aforementioned theorem
to our proof. According to the above theorem and Assumption
4, we obtain

E(iﬂt<Vl(9t)a V;Vl(ﬁt»)
= T 9 T
§E<01 > ’ +Co Y ‘
t=1 t=2
T-1 9
+Cs Yy ’ Ve — vt—lnt—lH ) + Cu,
t=2

where C7, Cs, C3 are constants independent of d and 7', Cy
is a constant independent of T". We divide the right formula to
three parts:

T
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First, we give the upper bound of the part 1 according to
Assumption 4:
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where the last inequality is due to Zthl 1/t < 1+logT. Then,
consider the part 2:
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Finally, the part 3 is as follows:
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Hence, we obtain
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Now we lower bound the LHS. With the assumption ||vr||1 > ¢,

we have
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We finally obtain:
min E(|[V7(6,)] )
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This proves Theorem 2. O

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems (NIPS), 2012, p. 1097-1105.

[2] A. Graves, A.-r. Mohamed, and G. E. Hinton, “Speech recognition

with deep recurrent neural networks,” in Acoustics, Speech and Signal

Processing (ICASSP), 2013 IEEE International Conference on, 2013, p.

6645-6649.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” in Proceedings of the IEEE, 1998, p.

2278-2324.

[4] T. M. Heskes and B. Kappen, “On-line learning processes in artificial
neural networks,” ser. North-Holland Mathematical Library, J. Taylor,
Ed. Elsevier, 1993, vol. 51, pp. 199 — 233.

[3

=

[5] Y. LeCun, L. Bottou, G. Orr, and K. Miiller, Efficient backprop, ser.
Lecture Notes in Computer Science, 2012, pp. 9-48.
[6] B. T. Polyak, “Some methods of speeding up the convergence of iteration

methods,” in USSR Computational Mathematics and Mathematical
Physics, 1964, pp. 4:791-803.

[71 Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/sqrt(k)),” in Soviet Mathematics Doklady, 1983,
pp. 27:372-376.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” in Journal of Machine
Learning Research (JMLR), 2011.

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” in CoRR,
2012.

T. Tieleman and G. Hinton, “RMSprop: Divide the gradient by a running
average of its recent magnitude,” in COURSERA: Neural networks for
machine learning, 2012.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2015.

S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam
and beyond,” in Proceedings of International Conference on Learning
Representations (ICLR), 2018.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adaptive
methods for nonconvex optimization,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018.
L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” in Proceedings of International
Conference on Learning Representations (ICLR), 2019.

J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu, “Closing the
generalization gap of adaptive gradient methods in training deep neural
networks,” in International Joint Conferences on Artificial Intelligence,
2020.

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the
variance of the adaptive learning rate and beyond,” in Proceedings of
the Eighth International Conference on Learning Representations (ICLR
2020), April 2020.

J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris,
and J. Duncan, “Adabelief optimizer: Adapting stepsizes by the belief
in observed gradients,” Conference on Neural Information Processing
Systems, 2020.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019.

Y. Malitsky and K. Mishchenko, “Adaptive gradient descent without
descent,” in CoRR, 2017.

H. Liu and X. Tian, “AEGD: Adaptive gradient decent with energy,”
2020.

E. Hazan, “Introduction to online convex optimization,” CoRR, vol.
abs/1909.05207, 2019. [Online]. Available: http://arxiv.org/abs/1909.
05207

A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher, “A new
regret analysis for adam-type algorithms,” in International Conference
on Machine Learning, 2020, pp. 202-210.

X. Chen, S. Liu, R. Sun, and M. Hong, “On the convergence of a class
of adam-type algorithms for non-convex optimization,” 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017.

A. Krizhevsky and G. E. Hinton, “Learning multiple layers of features
from tiny images,” in Technical report, 2009.

M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank,” 1993.



