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Abstract—Spiking Neural Networks (SNNs) have recently at-
tracted significant research interest and have been regarded as
the next generation of artificial neural networks due to their
suitability for energy-efficient event-driven neuromorphic com-
puting. However, the existing SNNs error backpropagation (BP)
method may have severe difficulties in non-differentiable spiking
generation functions and vanishing or exploding gradients. In this
paper, we introduce an efficient method for training SNNs with-
out backpropagation. The information bottleneck (IB) principle
is leveraged to learn synaptic weights and neuron thresholds of
an SNN. The membrane potential state for information represen-
tation is learned in real-time for higher time and space efficiency
compared with the conventional BP method. Experimental results
show that the proposed biologically plausible method achieves
comparable accuracy and considerable steps/memory reduction
in training SNN on MNIST/FashionMNIST datasets.

Index Terms—spiking neural networks, non-backpropagation,
membrane potential, information representation

I. INTRODUCTION

The spike neural networks (SNNs), inspired by human brain
computing, have recently been regarded as the third generation
of artificial neural networks and attracted significant research
interest. With the processing of binary spike information,
SNNs not only enable higher biological plausibility, but also
achieve computational efficiency [1–3]. Moreover, SNNs’ are
suitable for energy-efficient event-driven processing, such as
specialized neuromorphic hardware of IBM’s TrueNorth [4]
and Intel’s Loihi [5], have gained much attention. In order to
achieve the same level of performance as conventional deep
neural networks, various SNN backpropagation (BP) training
methods have been proposed [6, 7]. And the works in [8–13]
develop the surrogate derivative to computing the gradients
with respect to the spike activation to mitigate the non-
differentiability of the spiking function. Recently, the works
in [14, 15] further develop the surrogate derivative method for
SNN BP training and obtain better experimental results.

However, previous studies of SNN’s BP training method
still have several disadvantages. The first problem is that the
surrogate derivative approaches have limitations in accurate
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computing gradients, even if a complicated surrogate deriva-
tive approach is utilized for the non-differentiability of discrete
spike events. Moreover, the obstacle of vanishing gradient and
exploding gradient problem due to the gradient chain rule in
BP is more significant in the SNN because of the discrete spike
events’ non-differentiability. Furthermore, the training step is
long in the actual SNN implementation. It is not a just-in-
time calculation that needs to store historical data with more
footprint of memory, which leads to low time and memory
efficiency. Last but not least, the error BP method may be
considered to have lower biological plausibility, which may
be more critical to the more human-like SNN.

To address the above problems in the BP training method,
we propose a non-BP training method for SNNs. Our method
is inspired by some non-BP training algorithms in the field of
conventional neural network training such as classic method
attempt [16] or some information-theoretic methods [17, 18].
Our non-BP method not only can mitigate vanishing gradient
and exploding gradient but also can have higher biological
plausibility based on the information-theoretic IB principle
[19]. However, when applying these non-BP training algo-
rithms in [17, 18] to SNNs, it encounters information represen-
tation difficulties. To tackle the difficulties, we propose each
layer neurons’ membrane potential as a feature representation
that can partially alleviate the gradient approximation problem.
Moreover, it can be realized in real-time, offering higher
spatio-temporal efficiency.

This study aims to implement the non-BP training method of
SNN to address some problems in the conventional BP training
method for SNN. In implementing the method corresponding
to the characteristics of SNN, we detect that the membrane
potential should be utilized for information representation.
The proposed non-BP SNN training method may be a novel
attempt for the non-BP training algorithm for SNN within the
scope of our knowledge. The non-BP characteristic can mit-
igate the vanishing gradient and exploding gradient problem
and has higher biological plausibility. Moreover, the membrane
potential for feature representation characteristics can alleviate
the inaccuracy of the surrogate gradient and achieve higher
space and time efficiency.

We first implement several different local loss functions to



do a comparative experiment to select a better loss function.
Then we experiment with the same or deeper network structure
of the conventional SNN BP algorithm by selecting the better
local loss function. We employ the proposed method on the
MNIST [20], and the FashionMNIST [21] datasets. We achieve
close to the best results on these datasets, which verifies the
feasibility of our non-BP training method of SNN.

II. BACKGROUND

A. Related work

The related training algorithms for SNNs can be categorized
into spike-based error BP and artificial neural network (ANN)
to SNN conversion methodologies. The ANN-SNN conversion
training methods utilize an ANN to train a corresponding
shadow network, which leverages conventional ANN learning
methods and converts it to SNN [22–25]. However, such ANN-
SNN conversion leads to approximation errors and cannot
exploit SNNs’ spatio-temporal spiking characteristics.

The well-known SpikeProp algorithm in [6] is one of
the earliest BP training methods utilizing a single spike per
output neuron for BP. And the work in [7] enables an error
BP mechanism for deep SNNs, by treating the membrane
potentials of spiking neurons as differentiable signals. Recent
works in 2018 [8–10] on BP training methods for SNN utilize
the surrogate derivative to mitigate the non-differentiability of
the spiking function by computing the gradients with respect to
the spike activation. The work in 2019 [13] proposes a neuron
normalization technique to adjust the neural selectivity and
develop a direct BP learning algorithm for deep SNNs. And
the work [14] breaks down error BP across two types of inter-
neuron and intra-neuron dependencies to improve temporal
learning precision. Moreover, the work in [15] combines the
activation-based methods and the timing-based methods for
BP training for SNN.

However, the BP training methods have the problems of
vanishing gradient, exploding gradient and lower biological
plausibility. And some non-BP methods are proposed to
address these problems in the field of conventional neural
networks. The classic non-BP method in work [16] proposes
the dynamic routing between capsules for non-BP train-
ing. Furthermore, some information-theoretic non-BP training
methods in [17, 18] are proposed based on the IB principle
and local loss function. There is no related work on non-BP
training methods for SNNs to the best of our knowledge. And
we attempt to propose a non-BP training method for SNNs
inspired by the non-BP methods for the conventional neural
network mentioned above [16–18].

B. Spiking neural network models

We adopt the most common SNN model, named the leaky
integrate-and-fire (LIF) neuron model, in this work. The volt-
age dynamics of N neurons in a single layer can be described
as [26]

V̇(t) = −λV(t) + Wx(t) + Ωs(t) + Ibg(t), (1)
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Fig. 1. Illustration of a simple LIF neuron network structure with three
hidden neurons in the first hidden layer. The LIF model’s neuron fires a spike
whenever the neuron’s membrane potential crosses its threshold T and then
decreases to a low voltage.

where V(t) ∈ RN is the neurons’ membrane potential, λ
determines the membrane leak time-constant, x(t) ∈ RK is
the inputs of spike trains or the raw input data, W ∈ RN×K

is the forward weights, Ω ∈ RN×N is the recurrent weights,
s(t) ∈ RN is the outputs of post-neural spike trains, and
Ibg(t) ∈ RN is background currents or noise. A spike is
generated whenever a neuron’s membrane potential crosses its
threshold T . The N neurons layer’s thresholds are T ∈ RN

and the spike generate function is described as a sum of delta-
functions

s(t) =
∑
tj

δ (t− tj) , (2)

here tj is the j-th spiking time when V(tj) > T. The recurrent
weights Ω represent neuron’s reset that is a diagonal matrix
with all negative diagonal terms. Ωs(t) represents the process
of resetting the membrane potential of a neuron after the
neuron generates a spike.

A schematic diagram of the LIF neuron network structure
is shown in Fig. 1, where the SNN’s neurons fire a spike
s(t) = δ (t− tj) and reset membrane potential if V(tj) > T.
As seen in Fig. 1, the membrane potential of neurons leaks
over time when non-neurons spike firing. The LIF model’s
neuron fires a spike if the neuron’s membrane potential crosses
its threshold T and reset the neuron’s membrane potential.
Furthermore, the generated spike forwards to the next layer
with weights W ∈ RN×K . To simplify, we fix the background
currents or noise Ibg(t) ∈ RN to 0 in this work.



C. Information bottleneck (IB) principle

There are some attempts at non-BP algorithms in the field
of conventional neural networks, such as the dynamic routing
between capsules [16]. However, we employ the information-
theoretic non-BP training methods in [17, 18] based on the IB
principle in this work.

The information bottleneck (IB) principle [18, 19] attempts
to obtain a trade-off for the hidden representation between the
information needed for retaining the input and predicting the
output, generalizes the notion of minimal sufficient statistics.
The IB objective is formulated as

min
pRi|X

I (X;Ri)− βI (Ri;Y ) , (3)

where X,Y are the input and label random variables, re-
spectively, and Ri represents hidden feature representation of
layer i, I (X;Y ) is the mutual information, and β is a trade-
off hyperparameter. However, the mutual information in IB is
challenging to calculate in practice for several reasons. Based
on the IB principle framework, there might be different types
of approximation for mutual information in practical applica-
tions, so works [17, 18] use different local losses under the
IB framework to perform non-BP training for Convolutional
Neural Networks(CNNs) [27].

The non-BP training for CNN based on the IB principle
framework is schematically shown in Fig. 2. Apply the IB
principle in (3) to CNN, and training can be obtained as
solving the following optimization problem

R∗i = argmin
Ri

I (Ri;X)− βI (Ri;Y ) , (4)

so the local loss function can be expressed as

Li = I (Ri;X)− βI (Ri;Y ) , (5)

where Li is the local loss function on i-th layer. Note that
the IB-type global loss function in (3) can be optimized
by minimizing the local loss function (5) calculated by the
information representation of each layer, respectively. Here
the non-BP training method can be realized by minimizing
the local loss function separately, as shown in Fig. 2.

Considering the higher biological plausibility, it is possible
that there is no BP in the process of human neuron learning.
Therefore, it obtains higher biologically plausibility by non-
BP training for SNN. Moreover, non-BP training for SNN
also mitigates the vanishing gradient and exploding gradient
problem. The non-BP training method we proposed in this
paper combines the IB framework of section II-C and the LIF
SNN model of section II-B.

III. METHOD

A. Information representation and forward propagation

When we consider applying the information-theoretic IB
principle framework in Section II-C to SNN, a problem first
arises: what exactly is utilized to represent the information in
SNN hidden layers? Suppose we utilize each layer’s spike out-
put tensor in the conventional SNN to represent information.
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Fig. 2. Illustration of the IB principle framework for non-BP training in (3).
The IB-type local loss is iteratively obtained during the forward propagation.
So that the minimum IB-type global loss can be obtained to realize the non-
propagation training method.

For a simple instance, each layer’s conventional spike output
tensor can be expressed as a tensor with dimensions (N, C,
H, W, T), which represent the batch size, channel numbers,
image height, image width, and time steps, respectively. To
simplify the discussion, we only consider the spike output
tensor with dimensions (H, W, T) per layer; the other two (N,
C) dimensions can easily get the same inference. If we adopt
(3) to perform the calculation of mutual information type loss
function, two difficulties will arise:
• Both the input data and the corresponding output labels

can be regarded as the approximate representation of
information if we consider the requirements of biological
plausibility. However, each layer’s spike output tensor is
a three-dimensional (H, W, T) sparse 0-1 matrix, which
is challenging to find the corresponding meaning of the
information representation. For instance, suppose that a
specific position (h, w, t) is 1, which means generate a
spike in time (t) at position (h,w) from the coding point
of view. In that case, comparing with the image data
at the position (h, w) where pixel grayscale is (t), we
might understand how the spike output tensor represents
information. To summarize, it means that if there is a
spike-generation 1 at the position (h, w, t) in the three-
dimensional spike tensor, and the corresponding two-
dimensional information representation tensor is magni-
tude (t) at the (h, w) position. However, the problem
is that the time-domain coding assumption of the spike
output tensor could be multi-spike contradictions because
spikes may be generated at different times in one image
training of a conventional SNN.

• If we temporarily neglect the requirements of higher
biological plausibility and how each layer’s spike out-
put tensor represents information. Moreover, suppose we
directly employ the method in (3) (4) corresponding to
[18]. We could obtain mutual information by combining
the input data, output labels, and spike output tensor with
the size of (H, W, T). When we apply the kernel distance
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Fig. 3. Illustration of an analogy between the conventional ANN and the
SNN.

between features in k(x,y) ∼ exp
(
− 1

2‖x− y‖2/σ2
)

to calculate the features’ kernel distance of the same
layer, it will lead to a trivial result that most of the
elements are 0 and the rest are sparse constants due to
the multi-dimensional sparse 0-1 matrix characteristics of
the spike output tensor. Furthermore, the trivial result of
the features’ kernel distance will lead to the trivial loss
function result, which is inappropriate for proposing a
non-BP training method for SNN.

To address these difficulties and obtain a suitable informa-
tion representation in SNN, we compare the layer structure of
the conventional ANN with the conventional rectified linear
unit (ReLU [28]) activation function and the SNN, as shown
in Fig. 3. Each layer of the conventional ANN feature is the
output after the activation function

ReLU(Wx + b) = max(Wx + b, 0), (6)

where b is the bias, and the corresponding output of each
SNN’s layer after the threshold is

SO(Wx(t)) =

{
1 Wx(t) > T

0 otherwise
, (7)

where SO represents the spike generation process of SNN.
The result of this SNN process is a sparse 0-1 tensor with
one more time dimension, which has two difficulties discussed
above when referring to information representation.

We recognize that the comparison between ANN and SNN
in Fig. 3 is similar to comparing the combinational logic circuit
[29] and the mealy machine [30] in the sequential logic circuit
[31]. As shown in Fig. 4, the mealy machine as a finite state
machine [32] has the equivalent expressive potential compared
to a combinational logic circuit, which inspires us to utilize
the state corresponding to the membrane potential of the SNN
as the possibility of representing information [33].

Furthermore, we observe that the threshold vector T in
SNN and the bias in ANN are similar by comparing (6) (7).
However, the threshold T in conventional SNN is preset to
a constant value and does not participate in training. This
setting will cause the membrane potential of SNN neurons
to be limited by a uniform threshold without the meaning of
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Fig. 4. Illustration of the combinational logic circuit and the mealy machine.
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Fig. 5. Illustration of the ReLU function in the ANN and the corresponding
membrane potential state after the SO function with the trained threshold in
SNN.

information representation. So we analogize the bias in ANN
to the SNN threshold T, which can also be trained. Then
the membrane potential of neurons with various thresholds
dynamically represents the information.

We can see a certain degree of symmetry to confirm the
credibility of this method when comparing with the ReLU
function in the ANN and the corresponding membrane po-
tential state after the SO function with the trained thresh-
old, as shown in Fig. 5. Here we reset the spike-generating
neuron’s membrane potential to the threshold neighbourhood
by modifying the pre-defined parameter Ω. So the neuron’s
membrane potential obtains a steady-state oscillation and has
a certain symmetry with the ReLU activation function. And
utilizing membrane potential for information representation
may also obtain higher biological plausibility. For instance,
from the perspective of biological plausibility, the spikes
between human brain neurons may be an efficient information
transmission. The state of the entire brain neuron may be
more indicative of information, which can be understood as
the neuron’s membrane potential in this SNN structure.

Therefore, we propose to utilize the membrane potential to
represent the information in the SNN. The forward structure of
the entire spiking neural network is an extension of the single-
layer structure described in section II-B, introduced neuron
threshold learning mechanism within the layer and proper
preset parameter Ω for achieving the steady-state potential
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Fig. 6. Illustration of the whole architecture for training SNN without BP, where Si is the i-th layer’s output after SO function, Vi is the i-th layer’s neuron
membrane potential for information representation. The overall non-BP training network structure for SNN is based on the IB principle framework in Fig. 2.
The output of each SNN layer is bisected, where the SNN neurons’ membrane potential is participated in the calculation of the local loss function to train
the network parameters, and the spikes output from each layer after SO is forwarded to the next layer for information transmission.

oscillation.
From equation (1), the forward propagation process of each

SNN layer can be expressed as

V̇(t) = −λV(t) + Wx(t) + Ωs(t), (8)

here we preset the background noise Ibg(t) to 0. Moreover,
the next layer’s input in the forward propagation is

SO(V(t)) =

{
1 V(t) > T

0 otherwise
. (9)

B. Loss function and overall network structure

We can obtain the overall network structure by utilizing the
forward propagation SNN structure described in section III-A
combined with the IB principle in section II-C. The schematic
description of the entire network structure is shown in Fig. 6.

Among the whole SNN structure, the membrane potential
of each SNN layer can be regarded as the feature for infor-
mation representation and participates in calculating local loss
function. Applying (5) to the i-th layer membrane potential,
we get the IB objective (IB-type local loss) in SNN

Li = I (X;Vi)− βI (Vi;Y ) , (10)

where Vi is the i-th layer’s neuron membrane potential like
the features in CNN. However, the mutual information in (10)
may be difficult to calculate for various reasons. We can obtain
several types of local loss by the different mutual information
approximations in the IB principle framework.

We attempt four different local loss functions of different
mutual information approximations in our experiment. We
compare the results of different local loss functions to select
the local loss function that realizes better performance in SNN
to continue further experiments. For example, we examine a

distance projection as local loss function, refer to [26]. The
distance projection function Lproj is

Lproj =
1

2

∑
i

∥∥∥P>i (Y − Ỹ )
∥∥∥2 , (11)

where Pi is the i-th projection matrix, Y , Ỹ are the data labels
and predicted data labels, respectively.

We further examine the cross-entropy and the feature-
correlation as local loss function, and the combination of these
two local loss functions [17]. The cross-entropy function Lce

is
Lce = CrossEntropy

(
Y,DTVi

)
, (12)

where DT is the decoder matrix for decoding local layer
features Vi to Ỹ . The feature-correlation function Lcorr is

Lcorr = ‖C(Vi)− C(Y )‖2F , (13)

where C(X) is the correlation matrix in which an element cij
is

cij = cji =
x̃T
i x̃j

‖x̃i‖2 ‖x̃j‖2
. (14)

Combining the above two local loss functions with a trade-off,
the local loss function Lce-corr is,

Lce-corr = (1− β)Lce + βLcorr, (15)

where β is the weight parameter.
And for the different local loss functions of mutual infor-

mation approximations represented by membrane potential Vi,
the unified local loss gradient can be calculated by

∂L

∂Ti
=
∂L

∂Vi

∂Vi
∂Ti

, (16)

∂L

∂Wi
=
∂L

∂Vi

∂Vi
∂Wi

=
∂L

∂Vi
x(t), (17)



where Ti is the i-th layer neurons’ threshold. When we use
membrane potential as information representation, the gradient
of Vi versus Wi can be easily obtained, and the gradient of
Vi versus Ti can be expressed as

∂Vi
∂Ti

=
∂

∂Ti
(Ti − Vi)H(Vi − Ti)

= (Ti − Vi)δ (Vi − Ti) + 1 ≈ α1s(t) + α2,
(18)

where H(x) is the Heaviside step function and δ(x) is the
Dirac delta function. And we approximate the Dirac-function
in the implementation by the hyperparameters α1, α2, (α1 �
α2). Moreover, the (Ti−Vi)H(Vi−Ti) is the expression with
Ti for Ωs(t) in (8), in order to properly preset parameter Ω
for achieving the steady-state potential oscillation.

To summarize, we propose the whole non-BP training
method for SNN by integrating the SNN forward-propagation
(8), the IB principle framework (10), and the single-layer local
loss gradient (16), (17), (18). The non-BP training method not
only has higher biological plausibility, but also can mitigate
the vanishing gradient and exploding gradient problem.

Furthermore, the spike generation function s(t) does not
appear in the local loss function, which solves the non-
differentiable spike generation function problem and alleviates
the surrogate gradient’s inaccuracy. In other words, the out-
put of each SNN layer is bisected, the membrane potential
participates in the calculation of the local loss function to
train the network parameters, and each layer spike output
is forwarded to the next layer for information transmission.
And the membrane potential as an information representation
is similar to the state register in our SNN training method.
Therefore, the proposed method can calculate the current state
potential V in real-time instead of storing one more time-
dimension tensor data like the conventional SNN method,
achieving higher memory efficiency. Also, since the stable
oscillation state of the membrane potential V can be obtained
quicker by real-time calculation, it has fewer time steps and
higher time efficiency than the conventional SNN method.
Overall, the membrane potential for feature representation
characteristics can alleviate the inaccuracy of the surrogate
gradient and achieve higher memory and time efficiency.

IV. EXPERIMENTS

We first experiment with the proposed non-BP training
method with four different local loss functions in Section
III-B, which is the experiment IV-A with the multilayer
perceptron (MLP) network structure on the MNIST dataset.
Then we compare and select the local loss functions with
the best experimental results for further experiments. Fur-
ther experiments on the non-BP training method apply the
equivalent or the deeper network structure as the conven-
tional SNN on MNIST/FashionMNIST and obtain comparable
accuracy results. Furthermore, the proposed non-BP train-
ing method can mitigate the vanishing gradient and explod-
ing gradient problem that could train deeper networks and
achieve higher memory and time efficiency. The details of

TABLE I
PERFORMANCES OF NON-BP SNNS ON MNIST WITH DIFFERENT LOSSES

Local loss Type Network Epochs Accuracy
Lproj non-BP 100-100 100 33.47%
Lce non-BP 1024-1024-1024 100 93.89%
Lcorr non-BP 1024-1024-1024 100 90.96%

Lce−corr non-BP 1024-1024-1024 100 91.35%

our implementation and experimental settings are available at
https://github.com/worden1/ICTAI snn.

A. Local loss function comparison

Although SNN has recently attracted significant research
interest as a possible third-generation artificial neural network,
only several latest works [14, 22] have achieved the same
level performance results as ANN on the challenging data set
CIFAR10 [34]. However, other latest works are also mainly on
some simple data sets like MNIST for experiments. Therefore,
we first examine the performance of our proposed non-BP
training method using different local loss functions on the
MNIST dataset with MLP type SNN structure, and the results
are shown in Table I. We can see the experimental results
on MNIST of four different local loss functions and discover
that the local loss function in (12) offers the best result. It
is shown that a better mutual information approximation for
local loss function that is more suitable for SNN characteristics
might significantly improve the results’ accuracy. Therefore,
the local loss function Lce is selected for further non-BP
method experiments.

B. MNIST

We utilize the loss function Lce in (12) for the further
experiments. The engineering implementation of the whole
SNN layer is stored as a real-time tensor due to threshold
participation training. Moreover, the tensor dimension is (N,
C, H, W), which is different from the conventional SNN
structure (N, C, H, W, T). The proposed SNN structure is real-
time and does not need to store one more tensor dimension
(T). Therefore, the memory footprint is diminished, and long-
time simulation can be easily performed without worrying
about insufficient memory. Besides, it also obtains higher time
efficiency by quickly achieving the membrane potential stable
oscillation state.

We experiment with the same network structure with the
conventional BP method for SNN and a VGG [35] structure
on the MNIST data set. We compare the results with some
conventional SNN results in Table II. The proposed method
real-time nature can reduce memory usage and take fewer time
steps because the membrane potential quickly reaches a steady
state. From the results of the step/memory reduction column in
Table II we can see that our proposed non-BP method can have
higher time and memory efficiency, and the corresponding
step/memory reduction can reach up to 133.3/400x if we use
our method’s step/memory occupation as a benchmark 1/1x.
Training on the deeper VGG-like structure shows that the



TABLE II
PERFORMANCES OF NON-BP METHOD FOR TRAINING SNNS ON MNIST

Method Type Network Time steps Steps/Memory reduction Epochs Accuracy
HM2BP[10] BP 15C5-P2-40C5-P2-300 400 133.3/400x 100 99.42%
SLAYER[8] BP 12C5-P2-64C5-P2 300 100/300x 100 99.36%

Spiking CNN[7] BP 20C5-P2-50C5-P2-200 >200 66.7/200x 150 99.31%
STBP[9] BP 15C5-P2-40C5-P2-300 >100 33.3/100x 200 99.42%
TSSL[14] BP 15C5-P2-40C5-P2-300 5 1.6/5x 100 99.50%

ours non-BP 15C5-P2-40C5-P2-300 3 1/1x 100 98.19±0.19%
ours non-BP VGG8A 3 1/1x 100 98.96±0.18%

12C5: convolution layer with 12 of the 5× 5 filters. P2: pooling layer with 2× 2 filters.

TABLE III
PERFORMANCES OF NON-BP METHOD FOR TRAINING SNNS ON FASHIONMNIST

Method Type Network Time steps Steps/Memory reduction Epochs Accuracy
ANN[21] BP 32C5-P2-64C5-P2-1024 – – 100 91.60%

HM2BP[10] BP 400-400 400 133.3/400x 100 88.99%
TSSL[14] BP 32C5-P2-64C5-P2-1024 5 1.6/5x 100 92.83%

ours non-BP 32C5-P2-64C5-P2-1024 3 1/1x 100 87.74±0.22%
ours non-BP VGG8A 3 1/1x 100 87.92±0.33%

proposed method might mitigate the gradient vanishing and
gradient exploding through the non-BP training process. The
proposed method achieves close to the best results. However,
our method is non-BP comparing with that most of the
conventional SNN training methods are BP methods.

C. FashionMNIST

We employ the same network structure with the conven-
tional BP method for SNN and a deeper VGG structure net-
work on the FashionMNIST data set, and the experiment result
is listed in Table III. The test accuracy of our method is about
88% which is comparable to competing methods. However,
the experimental results slightly have less accuracy than other
conventional approaches, perhaps because the hyperparameters
or network structure are not optimal. Besides, the results of
the step/memory reduction in Table III show that our proposed
non-BP method can have higher time and memory efficiency,
and the corresponding step/memory reduction can reach up to
133.3/400x. Also, training on the deeper VGG-like structure
shows that the proposed method might mitigate the gradient
vanishing and gradient exploding problems and obtain higher
biological plausibility through the non-BP property.

V. CONCLUSION

We aim to implement a potential-state based method for
training spiking neural networks without BP in this work,
which may be a novel attempt within the scope of our knowl-
edge. The proposed method calculates the mutual information
between hidden features and datasets as the local loss function
to perform non-BP training of the SNN parameters, which
is essentially based on the IB principle framework. We find
that the membrane potential instead of the spike output tensor
can be utilized as the information representation in the SNN.
Correspondingly the proposed method introduces the threshold
to participate in the training and obtains higher biological
plausibility.

This proposed non-BP method for training SNN may have
the following advantages compared with the existing BP
method:
• It mitigates the difficulties of possible gradient vanishing

and gradient exploding during the conventional BP pro-
cess because it does not use a deep gradient chain rule.

• It allows to train deeper SNN for which BP training fails,
and it is potentially possible to enable parallel training of
each SNN layer because of non-BP chain rules.

• It alleviates the inaccuracy of the surrogate gradient due
to the non-differentiability, since the non-differentiable
spiking generation function does not appear in the local
loss function by applying membrane potential-state for
local loss calculation.

• It achieves higher memory and time efficiency, since the
membrane potential-state can calculate the local loss in
real-time and quickly achieve the stable oscillation state.

However, our method as a preliminary exploration still has
some limitations that need further work. For instance, we
can experiment on more data sets, improve the accuracy of
the result, and continue to find the local loss function more
suitable for the characteristics of SNN. Moreover, combined
with the real-time characteristics of our proposed method, it
may be applied to other application scenarios, such as time
series processing or video data processing.
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