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Abstract. Knowledge Distillation (KD) is one of the most popular and
effective techniques for model compression and knowledge transfer. How-
ever, most existing KD approaches are heavily relying on the labeled
training data, which is usually unavailable due to privacy concerns. Thus,
data-free KD focus on restoring the training data with Generative Ad-
versarial Networks (GANs) by either catering the pre-trained teacher or
fooling the student. In this paper we introduce Adversarial Variational
Knowledge Distillation (AVKD), a framework that formulates the restor-
ing process as Variational Autoencoders (VAEs). Different from vanilla
VAEs, AVKD is specified by a pre-trained teacher model p(y|x) of the
visible labels y given the latent x, a prior p(z) over the latent variables
and an approximate generative model g(z|y). In practice, we refer the
prior p(x) as an alternate unlabeled data distribution from other related
domains. Similar to Adversarial Variational Bayes (AVB), we estimate
the KL-divergence term between p(z) and ¢(z|y) by introducing a dis-
criminator network. Although the original training data are unavailable,
we argue that the prior data drawn from other related domains can be
easily obtained to learn the knowledge distillation efficiently. Extensive
experiments testify that our method outperforms the state-of-the-art al-
gorithms in the absence of the original training data, with performance
approaching the case where the original training data are provided.

Keywords: Data-free Knowledge Distillation - Variational Autoencoders
- Generative Adversarial Networks

1 Introduction

Knowledge Distillation (KD) [8] is a machine learning approach that transfers
knowledge from a larger capacity teacher model (or ensembles) into a more
compact student model. Given a pre-trained teacher model, a student aims to
learn knowledge from the teacher on the training data. Through distillation, one
hopes to obtain a student model that not only inherits better performance from
the teacher, but is also more efficient in the inference stage. In recent years, the
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knowledge distillation community has made great achievements with respect to
model architecture and several application domains [19-21, 23].

In spite of the significant progress, classical distillation methods heavily rely
on sufficient training data, which is often unavailable due to privacy, confiden-
tiality, property, size or transience. Hence, it is necessary to explore data-free
knowledge distillation algorithms which are independent of the original training
data.

Most existing data-free approaches concentrate on modeling the data dis-
tribution via GANs but are insufficient in theoretical derivations. In this work,
we formulate the data generation process from the perspective of Variational
Autoencoders (VAEs) [11].

Contrary to vanilla VAEs, we regard the input feature (e.g. images) as the
latent variables instead of visible variables while the output labels are viewed
as observations (i.e. visible variables). Here, we denote x as the feature and y
as the labels, respectively. As a result, we first propose a principled framework
named Variational Knowledge Distillation (VKD), which is composed of a
classification model p(y|z) of the visible variables y given the latent variables
x, a prior p(x) over the latent variables and an approximate generative model
q(zly). Specifically, the classification model p(y|z) is implemented with a well-
trained teacher model py(y|z) with fixed parameters 6. Taking the prior p(z)
as Gaussian (e.g. N'(0,I)) will cause poor performance in experiments since the
generative model g(z|y) can only produce ill-conditioned images that are harmful
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Fig.1. Overview of our proposed Adversarial Variational Knowledge Distillation
(AVKD) framework.

To address this problem, we employ some unlabeled data that can be eas-
ily obtained from other related domains as the prior. However, computing the
Kullback-Leibler divergence term between ¢(z|y) and p(x) is intractable since
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the unlabeled data have no explicit analytic expressions. To this end, we bor-
row the idea from Adversarial Variational Bayes (AVB) [15] and propose a re-
fined framework called Adversarial Variational Knowledge Distillation
(AVKD), which can estimate the Kullback—Leibler divergence based on a new
discriminator network. The purpose of the discriminator is to determine if an
example (z,y) is drawn from p(y)p(z) or from p(y)q(z|y). Here p(y) denotes the
real distribution of labels which are categories in a typical classification task.
The AVKD framework is shown in Figure 1.

Experiments in section 4 on various image classification datasets shows that
the student networks trained with our framework outperform existing state-of-
the-art methods in the absence of the original training data, with performance
approaching the settings where the original training data are provided.

2 Related Works

2.1 Knowledge Distillation

Knowledge Distillation is a popular model compression technique that transfers
the knowledge of a large-capacity model or an ensemble of models into a small
one. Bucilua et al. [3] first proposed the idea of training a network with another
network’s outputs on a large-scale unlabeled dataset. Ba et al. [2] later trained
shallow neural networks to mimic deep neural networks via regressing logits
(outputs of a neural network before the softmax activation) with mean square
error (MSE). Hinton et al. [8] further trained student neural networks with “soft
targets” produced by the teacher and first proposed the concept of Knowledge
Distillation.

2.2 Data-free Knowledge Distillation

The data-free knowledge distillation, i.e. optimizing the student model without
the original training data, becomes more challenging than vanilla knowledge dis-
tillation. Most existing approaches focus on synthetic images generation. Lopes
et al. [13] first utilized the “meta-data” (e.g. means and standard deviation of
activations from each layer) stored the teacher networks to generate fake samples
that can produce similar activations. Following-up works [17, 22] intended to use
less “meta-data” or design different training objectives. A similar strategy [5,
7,14] is to exploit the means and variances statistics stored in the batch nor-
malization layers [9] of neural networks. However, these “meta-data“ or batch
normalization statistics are not always provided by the teacher networks, indi-
cating that related approaches would failed sometimes. Another strategy [1,4]
proposed to train a generator network for data generation, which enables the
teacher network to produce predictions with high confidence, significantly rely-
ing on large batch size and training steps to produce large amount of diverse
images. Micaelli et al. [16] developed a new generation scheme via adversarial
learning. Specifically, a generator is employed to produce samples that maximize
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the knowledge distillation loss [8] between the teacher and student networks.
Similarly, Fang et al. [6] replaced the knowledge distillation loss with mean av-
erage error (MAE) and achieved better performance. These two methods aim
to search hard samples for the student throughout the whole input space, which
are easily to fall into a suboptimal solution due to the high dimensions of the
searching space.

3 Method

3.1 Problem Formulation

Knowledge Distillation In typical knowledge distillation form of classification
tasks, given a pre-trained teacher model py(y|x) parameterized by 6, a student
model py(y|z) parameterized by ) aims to solve the following problem:

100 By, o) [Dic2 (p(312) | puy1a)). (3.1)

where D, refers to the Kullback—Leibler divergence that evaluates the discrep-
ancy between the distributions produced by the teacher and student models.
Here pgata(z,y) denotes joint distribution of the original training samples and
labels. Note that the Dy term is independent with labels y, so we can refor-
mulate problem (3.1) as

min By, @) [Prrpo(yle) || po(yl2))]- (3-2)

Data-free Knowledge Distillation Optimization (3.1) can be also rewritten
as

800 B0 B D1 (o012 || pis(yl)))) (3.3)

where pyqta(y) is a categorical distribution in classification tasks. However, op-
timizing either (3.2) or (3.3) requires the knowledge of the data distribution
Ddata(T) OF Paata(z|y), which is unavailable in the data-free setting. Most exist-
ing data-free approaches concentrate on modeling the distribution pgetq () or
Ddata(|y) directly via GANs without any derivations.

In this work, we focus on approximating pgata(z]y) with generative model
gs(x|y) parameterized by ¢. Then, the data-free knowledge distillation problem
can be reformulated as

min By,,,, ) [Eos o [Px2 (Po(yl) || po(yle))]] (3.4)

Thus in the rest of this paper, we concentrate on modeling and learning the
generative model g, (x|y).
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3.2 Variational Knowledge Distillation (VKD)

Given a pre-trained teacher py(y|z), our goal is to approximate the true gener-
ative model pg(z|y) via a approximate parametric model g4 (z|y). In this work,
we consider z as the latent variables of features (such as images) and y as the
visible variables of labels. As a result, following VAEs, it can be shown as

log po(y) > —Drr(q5(2ly) || p(2)) + By, (xly) log po(y|z)], (3.5)

where p(x) denotes the prior distribution over the latent variables. The right
hand side of (3.5) is called the evidence lower bound (ELBO).

When performing maximum-likelihood training, the goal of VAEs is to opti-
mize the marginal log-likelihood

Epiaraty) logpo(y)] - (3.6)

However, computing log pg(y) requires marginalizing out z in py(y,x) which is
usually intractable. Instead, VAEs use inequality (3.5) to rephrase the intractable
problem of optimizing (3.6) into optimizing the ELBO:

maxmax By, ) [~Dicr(a6(@ly) || @) + Eg, ) logpoyl)]] - (3.7)

In the knowledge distillation setting, the teacher model py(y|z) has been trained
well on the original data distribution pg.tq(z,y). Consequently, we fix the weight
0 of teacher while optimizing (3.7), then the training objective becomes

max Ep,1, ([~ Drcr(@o(@[y) | P(2)) + Egy o1y Bogpo(wl2)ll- - (3.8)

Note that the term Dgr(ge(z|y) || p(x)) is an expectation on g4 (z|y) according
to its definition, then we can rewrite the optimization problem in (3.8) as

max By, () [Eag ol 108 () — 10 45 (x]y) + log po (y]2)]]. (3.9)
When we have an explicit representation of g, (z|y) and p(x) such as Gaussian,

(3.9) can be optimized using the reparameterization trick [11, 18] and Stochastic
Gradient Descent (SGD).

3.3 Adversarial Variational Knowledge Distillation (AVKD)

One significant drawback of VKD, however, is that samples drawn from the
gs(x|y) are ill-formed since it is almost impossible to find a perfect explicit
expression for p(x) to model real data such as images. Thus, the performance
provided by the student model trained with g4 (x|y) might be very poor. To this
end, we replace the prior p(z) with large amount unlabeled data in real scenarios
from other related domains. For ease of description, we term the unlabeled data
as prior data in this work. Using the prior data the student model can produce
much better performance and experiments details are described in section 4.

5
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However, it is intractable to optimize (3.9) when only given prior data sam-
pled from an implicit prior p(z). Following the Adversarial Variational Bayes
(AVB) [15], we therefore introduce an auxiliary discriminative network to rephrase
the maximum-likelihood-problem as a two-player game, as described in the fol-
lowing.

The main idea of AVB is to implicitly representing the term in (3.9)

log p(x) —log g (|y) (3.10)

as the optimal value of an additional real-valued discriminator network D, (z, y)
parameterized by w.
Specifically, when given g4 (z|y), the objective of the discriminator is

max By, ) [Eg, (2ly) 1080 (Do (2,9)) + Epaylog(l — o(Du(2,9)))],  (3.11)

where o(t) :=1/(1+e™") is the sigmoid function. As shown in literature [15], it
turns out that the optimal is given as

D*(z,y) = loggs(xly) — log p(x). (3.12)
Here, D*(x,y) denotes the function that maximizes (3.11) and the right hand

side of (3.12) is the negative of (3.10). The detail proof can be found in [15].
We can rewrite the objective in (3.8) as

max By, ) [Ego oly) [ D7 (2,) + log po (y[2)]. (3.13)

Optimizing (3.13) requires to calculate the gradient w.r.t ¢, which is difficult
since we have defined D*(z,y) as the solution of problem (3.11) that itself de-
pends on ¢. Fortunately, the literature [15] has proved that

Eqy @iV D" (2,y)] =0, (3.14)

which indicates that it is unnecessary to take the gradient w.r.t the explicit
occurrence of ¢ in D*(x,y).

Adversarial training Inspired by the idea of [6, 16], we introduce an auxiliary
objective for the generative model g4(z|y) that maximizes the discrepancy be-
tween the teacher and student model, resulting in a two-player game between the
generative model and the student model. With adversarial training, the goal of
gs(z|y) changes to maximize objective in (3.13) and adversarial objective jointly:

max E,, . () [Eq, 2y [ — D (2, y) + log pe(y|x)
¢ (3.15)

+ Drr(po(yle) || pe(ylz))]]-
The objective of the generator consists of three terms:

— The —D*(z,y) is the discriminative term that allows the generator to pro-
duce similar samples to prior data by fooling the discriminator D(zx,y).

— The second term log py(y|x) is called the reconstruction log-likelihood for
the input labels y.

— The adversarial term Dy, (po(y|z) || py(y|z)) encourages the generator to
generate hard training samples for the student.
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Training objectives Using the reparameterization trick [11, 18], we can rewrite
the objective of the generative model g4(z|y) in (3.15) as

max BEpiorat) [Epo)l — D*(Gg(y, €),y) +10g pa(y|Gy(y, €))

+ Drr(po(ylGos(y, €)) || po(ylGo(y, €)))]l;

where p(e) is a Gaussian and G4 (y, €) is a learnable generator network param-
eterized by ¢. Similarly, the objective of the discriminator model in (3.11) and
the objective of the student model in (3.4) can be rewritten in the form

(3.16)

max Epara(y) [Ep(e) loga(Du,(Gg(y,€),y))

(3.17)
+ Ep(r)log(l - U(Dw (.’17, y)))]

and
min By v () [Epo) [P (po(y|Go(y,€) || Py (y|Go(y, )], (3.18)

respectively.

Note that applying SGD on the objective of (3.16) requires keep D*(z,y)
optimal which might be very time-consuming. Therefore, we treat the optimiza-
tion problems in (3.16) and (3.17) as a two-player game following AVB [15]. An
overview of our proposed AVKD is shown in Figure 1.

3.4 Algorithm

In practice, we applying SGD jointly to (3.16), (3.18) and (3.17), see Algorithm 1.
Here, n and m denote the learning rate and batch size, respectively. Note that
we apply n SGD-updates to the student model at each iteration to distill the
teacher model more efficiently.

4 Experiments

4.1 Experiments Setup

CIFAR The CIFARI10 dataset [12] consists of 50K training and 10K testing
RGB images with resolution 32 x 32 of 10 categories. For the CIFARI0 clas-
sification task, we use the CIFAR100 [12] and Tiny-ImageNet datasets as the
prior data respectively. Since the CIFAR100 dataset contains two coarse classes
(i.e. vehiclesl and vehicles2) related with two fine-grained classes (i.e. automo-
bile and truck) of CIFAR10, we therefore remove the 10 fine-grained classes of
vehicles] and vehicles2 in CIFAR100, resulting in a modified dataset termed as
CIFAR90. Thus, we train the AVKD with various prior data such as CIFAR90,
CIFAR100 and Tiny-ImageNet of 32 x 32 image size, respectively.

Similar to CIFAR10, CIFAR100 [12] consists of 50K training and 10K testing
RGB images except that all images are distributed over 100 categories. In this
experiment, the CIFAR10 and Tiny-ImageNet of 32 x 32 image size are employed
as prior data respectively.

7
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Algorithm 1: Adversarial Variational Knowledge Distillation (AVKD)

1 for 1,2,...,N do
2 Sample {z, ..., (™} from prior data
3 | Sample {y", ...y} from paara(y)
4 Sample {eV, ..., (™} from A(0,T)
5
6 Compute ¢-gradient for generator (eq. 3.16):
7| g e B ST VD (Galy™®, M), y®) + log poy PG (y ¥, )
8 + D (po(y™]Go(y™, ™) | pu(y™®|Gs(y™, ™))
9 Update parameters of generator:
10 | ¢ o+nXgs
11
12 Compute w-gradient for discriminator (eq. 3.17):
13| go ¢ o YV Vallogo(Du(Go(y™, ™), y )
14 +log(1 — o(D. (a:(k>, y(k))))]
15 Update parameters of discriminator:
16 W~ w+nXgw
17
18 for 1,2,...,n do
19 Sample {y(1>, ...7y<m)} from paata(y)
20 Sample {¢V), ..., ™} from N(0,1)
21 Compute 1)-gradient for student (eq. 3.18):
22 9o = o e Vu[Drr(pe(ylGo(y™, €9) || py (y1Go(y™, €*))))]
23 Update parameters of student:
24 Y=Y —nxgy
25 end
26 end

Tiny-ImageNet The Tiny-ImageNet dataset is a modified subset of the original
ImageNet dataset. Here, there are 200 different classes instead of 1000 classes
of ImageNet, with 100K training examples and 10K validation examples. The
resolution of the images is resized to 64 x 64 pixels, which is different from the
ImageNet. Since the Tiny-ImageNet also contains 10K testing images without
labels, we can only report the test accuracies on the validation images. We
explore two target resolutions: 32 x 32 matching that of CIFAR10 and CIFAR100,
and full resolution 64 x 64. For 32 x 32 image size we therefore choose training
sets of CIFAR10 and CIFARI100 as the prior data respectively. For resolution of
64 x 64, we take the Caltech101' and Caltech2562 as the prior data, respectively.

! http://www.vision.caltech.edu/Image_Datasets/Caltech101/
2 http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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4.2 Implementation details

To verify the robustness of our method, we conduct all experiments with same
hyperparameters. Note that the pgqia(y) is set to discrete uniform distribution
since we suppose every dataset is of category balance. We train our proposed
method with 100K iterations and batch size of 256 for all experiments, and we
update the student network with 5 times at each iteration so that it can learn
more sufficiently from the current generative model. To make a fair comparison,
we follow the setting used in the previous literature [4,6] with a pre-trained
ResNet34 as the teacher network and ResNet18 as the student. The generator
architecture is modified from the one used in [4,6] and the discriminator is
constructed with three convolutional layers. We optimize the generator network
with Adam [10] with an initial learning rate of 1073 that is divided by 10 at
the 20K-th and 40K-th iteration respectively. The student and discriminator are
trained by the Nesterov Accelerated Gradient (NAG) optimizer with momentum
0.9 and weight decay 5x10~%. The discriminator is trained with constant learning
rate of 2 x 1074, The initial learning rate of the student is 0.1 and decayed by
0.985 every 200 iterations. For each experiment we run it three times and report
the mean accuracy.

4.3 Results

CIFAR10 Table 1 summarized test accuracies of student models trained by
different methods on CIFAR10 dataset. Trained in fully supervised setting, the
teacher (ResNet34) and the student networks (ResNet18) achieve accuraies of
95.53% and 93.92%, respectively. The student network trained with knowledge
distillation [8] using the original training data (CIFAR10) achieves a +0.38%
improvement over the one trained from scratch. In the data-free setting, using
Gaussian noise as inputs results in poor performance which is only slightly bet-
ter than a random guess (around 10%). For CIFAR10, we employ CIFAROO0,
CIFAR100 and TinylmageNet 32 x 32 as the prior data, respectively. Train-
ing with CIFAR100 achieves the highest accuracy of 93.50% since CIFAR100 is
more diverse than CIFAR90 and more revalant to CIFAR10 than TinylmageNet.

We also compare our methods with DAFL [4] and DFAD [6] using their
released codes with batch size of 256. Note that our method is only slightly
better than other data-free algorithms, as one reason is that the 10-category
classification task with resolution 32 x 32 is too simple to differentiate these
methods.

CIFAR100 Results on CIFAR100 obtained by different methods are also listed
in Table 1. It can be found that our proposed method outperforms others
with considerable improvements better than the case in CIFAR10 experiments.
Specifically, while training with CIFAR10 as prior data, our method exceeds the
DAFL [4], DFAD [6] and DeGAN [1] with 10.53%, 4.18% and 6.63%, respec-
tively. While training with TinyImagenet 32 x 32, our method also outperforms
other state-of-the-art methods with considerable improvements. Note that the

9
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Table 1. Test accuracies on CIFAR10 and CIFAR100. In our experiments, we employ
the ResNet34 as the teacher and ResNet18 as the student model, respectively.

CIFARI10 CIFAR100

Model Method Prior Data |Accuracy|| Prior Data [Accuracy
ResNet34 Supervised Training N/A 95.53% N/A 77.58%
ResNet18 Supervised Training N/A 93.92% N/A 76.51%
ResNet18 KDI[g] N/A 94.30% N/A 76.89%
ResNet18 Gaussian Noise N/A 11.43% N/A 1.23%
ResNet18 DAFL[4] N/A 88.41% N/A 61.35%
ResNet18 DFAD[6] N/A 93.30% N/A 67.70%
ResNet18 DeGANJ1] N/A N/A CIFAR90 65.25%

CIFAR90 93.41% CIFAR10 71.88%
ResNet18 Ours CIFAR100 |93.50% || TinylmageNet| 70.26%

TinyImageNet| 93.02% N/A N/A

DeGAN also takes CIFAR90 as an alternative of the original training data but
achieves lower test accuracy than ours.

Tiny-ImageNet For Tiny-ImageNet classification task, we conduct experi-
ments on two target resolutions of 32 x 32 and 64 x 64. In order to compare
our method with DAFL [4] and DFAD [6], we modified their released codes to
run it on Tiny-ImageNet with the two different resolutions and all hyperparam-
eters remain unchanged. Note that we don’t report the results of DeGAN [1]
since the authors didn’t release their codes.

The results of Tiny-ImageNet 32 x 32 can be found in table 2. Our method
achieves accuracies of 46.96% and 50.22% with CIFAR10 and CIFAR100 as the
prior data respectively, outperforming all other data-free approaches by a large
margin. We can also observe that the proposed method trained with more diverse
dataset (i.e. CIFAR100) gains higher accuracy than CIFAR10 with improvement
of +3.26% that is considerable for a 200-category classification task.

For results of Tiny-ImageNet 64 x 64, as shown in table 2, our proposed
method exceeds DFAD [6] with better improvements than the case of 32 x 32
resolution.

Visualization Results We plot the reconstructed images of CIFAR10 by our
proposed AVKD trained with TinyImagenet in Figure 2. Images of same category
are plotted in one row, where images on the left side are sampled from the
true dataset while on another side are the generated images. It can be found
that the generative model in the proposed AVKD can learn the key features of
different categories from the pretrained teacher and the prior data, hence these
synthesized samples can transfer relevant knowledge about the original training
data. These results, therefore, testify the effectiveness our proposed method from
another perspective.
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Table 2. Test accuracies on TinyImageNet of two resolutions. We employ ResNet34
as the teacher and ResNet18 as the student model, respectively.

TinyImageNet32 x 32 || TinyImageNet64 x 64
Model Method Prior Data| Accuracy ||Prior Data| Accuracy
ResNet34 Supervised Training|| N/A 57.68% N/A 61.49%
ResNet18 Supervised Training N/A 54.30% N/A 58.30%
ResNet18 KDI§] N/A 55.06% N/A 58.98%
ResNet18 Random Noise N/A 0.57% N/A 0.54%
ResNet18 DAFL[4] N/A 26.32% N/A 13.24%
ResNet18 DFAD[6] N/A 29.52% N/A 15.92%
ResNet18 Ours CIFAR10 | 46.96% ||Caltech101| 46.11%

CIFAR100| 50.22% ||Caltech256| 46.25%

airplane

o o IRl o B (R |l lﬁlii“’
sutomabile ﬁi@lﬁ% ggﬂ s <k

bird

TR ol
ship .L‘HE--.E—IH
truck !yﬂﬁ'mmnﬂ

Fig. 2. Visualization of generated images. Images on the left side are sampled from the
CIFARI10 dataset while on the right side are generated by our proposed AVKD.

11



12

ICANN2021, 514, v4 (final): ’Adversarial Variational Knowledge Distillation’

12 Tang and Lin

5 Conclusion

In this work, we introduce the Adversarial Variational Knowledge Distillation
(AVKD), a framework that can distil a well-trained large-capacity teacher model
into a compact student model in the absence of original training data on which
the teacher are trained. Since the original training data is unavailable, we treat
the data (i.e. images in this work) as latent variables and learn the generative
model gg4(x|y) to model the original training data. By employing the unlabeld
prior data, experiments have shown that our method outperforms other data-
free KD algorithms on various images classification tasks. Furthermore, we found
that our method can exceed other methods with larger margin for more difficult
tasks, indicating the effectiveness of the proposed method.
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