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Abstract—Epilepsy is a chronic neurological disorder that
affects many people in the world. Automatic epileptic detection
based on multi-channel electroencephalogram (EEG) signals
is of great significance and has been widely studied. Recent
deep learning models fail to consider the weights of different
EEG channels since a few channels can play more important
roles than other ones. In this paper, we propose an end-to-end
epilepsy detection model, CW-SRNet, to solve this problem. We
design a novel channel-weighted block (CW-Block) to capture
the different importance of EEG channels automatically and
dynamically. We combine our novel CW-Block with the squeeze-
and-excitation residual network to improve epilepsy detection
performance. Experiments on two public EEG datasets show that
our model achieves state-of-the-art performance. Particularly on
the CHB-MIT dataset, our model achieves an average sensitivity
of 96.84% and an average specificity of 99.68%, outperforming
other methods with clear margins.

Index Terms—EEG, epilepsy seizure detection, deep learning,
multi-channel weights, squeeze-and-excitation, residual networks

I. INTRODUCTION

Epilepsy is a chronic neurological disorder caused by
abnormal discharges of brain nerve cells [1]. According to
the World Health Organization Report, around 50 million
people worldwide suffer from epilepsy, making it one of
the most common neurological diseases globally [2]. Elec-
troencephalography (EEG, as shown in Figure 1) can record
epileptic discharges directly and has been widely used in the
diagnosis and treatment of epilepsy [3]. The analysis of EEG
recordings requires highly professionally trained neurologists,
which may take much time and is subject to the experience and
proficiency of the neurologists. Therefore, automatic seizure
detection is of great significance for clinical application and
research [4].

Various machine learning techniques have been proposed
in order to realize automatic epileptic seizure detection. The
local mean decomposition (LMD) was firstly introduced by
Smith [5]. Support vector machine (SVM) has also been used
for classification of EEG signals [6]. However, most of these
methods require complicated feature engineering based on
mathematical or medical knowledge. The dominant frequency,
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power ratio of the EEG waves and width of the dominant peak
are the common hand-crafted features extracted from temporal
windows of EEG signals [7] [8]. Those feature engineering
practices are often complicated and most algorithms also
require precise seizure labels which are time-consuming for
doctors to create.

The deep learning models have recently achieved some
significant successes in the analysis of EEG signals. The
convolutional neural networks (CNNs) have been widely used
in the medical image analysis [9]. Compared to traditional
artificial features, feature learning by deep CNNs obviously
improves the performance of seizure detection [10]. However,
many of the proposed CNN models do not explicitly consider
the multi-channel characteristics of EEG data, and there is still
much room for improvement in epileptic seizure detection.

In this paper, we propose a novel epileptic seizure detection
model based on the deep residual networks and squeeze-
and-excitation networks. The well-known residual networks
using the shortcut can solve the problem of reduced accuracy
in deeper layer to a certain extent [11]. The squeeze-and-
excitation networks using SE blocks can capture the rela-
tionship between channels by explicitly modeling the interde-
pendencies between the channels of its convolutional features
[12]. Meanwhile, we design a novel channel-weighted block
(CW-Block) to weight the multi-channel EEG data. Finally,
we achieve state-of-the-art results on the Bonn dataset and the
CHB-MIT dataset. The contributions of this paper are listed
as follow:

• We propose a novel channel-weighted block (CW-Block)
to automatically weight multi-channel EEG signals. Our
experiments prove that this block can effectively capture
EEG channel weights and improve the ability of the
model to detect epilepsy.

• We propose an end-to-end seizure detection model, CW-
SRNet. This model, designed for the multi-channel char-
acteristics of EEG, uses the CW-blocks and SE blocks to
improve the seizure detection performance.

• Experiments on two public EEG datasets show that our
method achieves state-of-the-art results. Particularly on
the CHB-MIT dataset, our model achieves an average
sensitivity of 96.84%, which is three percentage points
higher than previous SOTA models.



Fig. 1. The waveform graphs sampled from the CHB-MIT EEG dataset. the left figure is the normal period, and the right is the epileptic seizure period.
There are 23 channels of this EEG signals.

The article is composed as follows. The Section II discusses
the relevant work. The Section III elaborates our proposed
detection model. We then describe the experimental setup and
present the results in Section IV. We give further discussion
in Section V before conclusion in Section VI.

II. RELATED WORK

In this section, we review some representative work for
seizure detection.

A. Feature Engineering Methods

Early automated seizure detection relied on heuristic rules
and threshold settings of human experts [13]. Following these
heuristic methods, machine learning algorithms have been
widely used in studies to detect seizures [14]. To convert the
raw multi-channel EEG signals into the model input, many fea-
ture engineering methods based on time domain and frequency
domain have been proposed. The short-time Fourier transform
(STFT) was used by Kiymik [15] to decompose EEG signals
into time-frequency representations. The wavelet transform
(WT) also became an important tool for time-frequency de-
composition of EEG signals [16]. Zhang and Parhi proposed
the spectral power analysis method [17]. Ghosh-Dastidar com-
bined the discrete wavelet transform (DWT) with nonlinear
dynamics to detect seizures [18]. By decomposing a signal
into a series of finite modulo functions, the empirical mode
decomposition (EMD) has been successfully applied to medi-
cal signal analysis and is suitable for EEG analysis [19]. The
local mean decomposition (LMD), firstly introduced by Smith
[5], aims at decomposing an original EEG signal into a series
products of frequency modulated signals and an envelope
signal [20].

B. Deep Learning Methods

Recently, deep learning technologies have been applied
to automatic feature learning for raw high-dimensional EEG
data [21]. By constructing multi-layer neural networks, deep
learning is able to capture relevant features during end-to-end
training. Convolutional neural networks have been widely used
in EEG signal processing [22] after making great achievements

in visual tasks. Acharya [23] proposed a deep CNN consisting
of 13 layers for automatic seizure detection. Wei [10] applied
a 12 layers CNN with Wasserstein Generative Adversarial
Nets (WGANs) for data enhancement. Abdelhameed [24]
combined a one-dimensional CNN with a bi-directional long
short-term memory (Bi-LSTM). Hu [25] used a Bi-LSTM
with some time-frequence features. Tanveer [26] employed
ensemble CNNs to enhance the predictive performance of the
model.

III. METHODOLOGY

In this section, we introduce the structure of our proposed
seizure detection model, CW-SRNet, which is mainly com-
posed of the CW-Block and the SE-ResNet module.

A. CW-Block

During epileptic seizures, mostly only a few channels have
obvious signal changes. So it is necessary to consider the
importance of different channels. In order to adaptively capture
the importance of channels, we design the channel-weighted
block (CW-Block). After a simple pre-processing, the dimen-
sion of raw input EEG data is T × C, where T is the total
time of each channel and C is the number of EEG channels.
Firstly, we use the 1D convolution to capture the global signal
representation, which maps the input into a segment with size
of S × C. Then we put the segment into two-layer neural
network and get the output after the softmax layer. Average
pooling is used for every channel to get the final channel
weights vector with the size of 1 × C. Finally, we multiply
the data of each channel with its corresponding weights. This
process is formulated as follows:

X1 = 1D-Convolution(Input), (1)
X2 = Softmax(FC2(FC1(X1))), (2)
X3 = Average Pooling(X2), (3)

X4 = X3 × Input, (4)

where FCi is a fully connected network and X3 are channel
weights. The procedure (1)-(4) forms a channel-weighted



Fig. 2. The Structure of a CW-Block

block (CW-Block) and the structure of a CW-Block is shown
in Figure 2. In Section IV and Section V we can see that this
block can effectively assign the different channel weights and
improve the performance of seizure detection models.

B. SE-ResNet module

This module is mainly based on deep residual networks [11]
and squeeze-and-excitation networks [12]. The SE (squeeze-
and-excitation) block is shown in Figure 3.

Fig. 3. The Structure of a SE Block

This SE block is designed to explicitly model the interde-
pendencies between the channels of its convolutional features.
We get SE-ResNet when we add SE blocks to the residual
blocks in ResNet. To better deal with the multiple channels
of EEG data , we replace part of the SE blocks with CW-
Blocks. Different from the CW-Block as mentioned above, this
3D CW-Block operates on 3D data here. For feature maps
with dimension T × C × M , where M is the number of
feature maps, we let CW-Blocks only work on dimension C.
Correspondingly, SE blocks only work on dimension M . In
our method, 18-layer residual network is used as the backbone

Fig. 4. The Architecture of Our CW-SRNet Model

model. Our proposed method alternately applies the CW-
Block and the SE block to get channel weights in different
dimensions. The layout of the CW-SRNet is given in Figure
4.

C. Focal Loss Optimization

The class imbalance problem in the epilepsy datasets is se-
rious. The seizure EEG data is acquired through long duration
recording, and the subject is in a non-seizure state for most of
the time. So there are much more interictal segments than ictal
segments. For majority of subjects, the ratio between seizure
samples and non-seizure samples is even less than 0.1. This
class imbalance will make the model prone to classify the
segments as non-seizure. We use the focal loss to alleviate
this problem.

The focal loss function was firstly proposed by [27], which
is to address the problem of extreme imbalance between
foreground and background classes during training in object
detection scenarios. Focal loss is mainly used for object
detection, but it is also applicable for classification problem
with imbalanced EEG datasets. The focal loss is defined as
follows:

FL(pt) = −αt(1− pt)γ log(pt). (5)

where

pt =

{
p if y = 1,
1− p otherwise.

and

αt =

{
α if y = 1,
1− α otherwise.

Here y denotes the ground truth of a sample.



The focal loss function has two parameters α and γ. Lin
et al. [27] used a 1:3 imbalanced dataset, and tested different
α and γ. They found that the best α is 0.25 and the best
γ is 2. However, most of the subjects that we used are
extremely imbalanced than those in [27]. Therefore, the values
used in [27] may not be applicable here. In this work, we
propose to apply this focal loss function to the end of our
proposed architecture and find the optimal parameters through
experiments.

TABLE I
Data Information of the CHB-MIT Dataset

Patient Age Gender Number of
seizures

Total seizure
time (s)

Total non-seizure
time (hh:mm:ss)

1 F 11 7 474 37:31:42
2 M 11 2 172 34:16:34
3 F 14 7 402 33:03:13
4 M 22 2 276 59:27:32
5 F 7 5 558 35:57:44
6 F 1.5 10 104 58:45:12
7 F 14.5 3 325 62:01:26
8 M 3.5 5 919 17:57:44
9 F 10 3 197 64:14:10

10 M 3 7 447 45:02:22
11 F 12 3 806 31:36:11
20 F 6 8 229 24:05:08
21 F 13 4 199 31:01:02
22 F 9 3 204 31:00:11
23 F 6 7 244 24:35:14

Total - - 76 5556 590:35:25

IV. EXPERIMENTS
In this section, we compare our CW-SRNet model with

other state-of-the-art methods for seizure detection.

A. EEG Datasets

a) Bonn EEG Dataset: This dataset was collected by
Andrzejak [28] at Bonn University, Germany. It consists of
two sets of surface EEG segments from healthy volunteers
with and without eyes open (subsets A and B) and three sets
of intracranial EEG recordings from epilepsy patients during
the seizure-free period (subsets C and D) as well as during
seizures (subset E). Each subset contains 100 single-channel
EEG segments of 23.6 seconds duration with 4096 sampling
indexes. The sampling rate and resolution are 173.61 Hz and
12 bits respectively [29].

b) CHB-MIT Dataset: The CHB-MIT EEG dataset was
gathered at the Children’s Hospital Boston [30]. This dataset
consists of long-duration multi-channel EEG recordings from
23 pediatric patients with intractable seizures. The original
scalp EEG recordings were obtained using 256 Hz sampling
rate with a 16 bit resolution from electrodes. Those electrodes
were placed according to the international 10–20 system of
EEG electrode positions and nomenclature [31]. Because of
the data disorder in some patients, we only use the data of
fifteen patients. Channels 15 and 23 present the same bipolar
combination, so channel 23 is discarded to avoid the redundant
information. Details about the CHB-MIT dataset are described
in Table I.

B. Setup

Some experimental paradigms in the Bonn dataset, such
as single-channel EEG with tags assigned to long-term EEG
fragments, are replaced by multi-channel recording and frame-
by-frame detection [32]. In this study, we design two kinds
of different cases as follows [33]. In Case I, subsets A, B,
C, and D are grouped together as the normal class whereas
the set E is considered as seizure class. In Case II, subsets
A and B, subsets C and D, and subset E belong to healthy
subjects, patients with interictal epilepsy, and patients with
epilepsy during epilepsy, respectively.

For the CHB-MIT dataset, we only do simple preprocessing
instead of complicated feature engineering. Firstly, we use
downsampling to reduce the 256Hz EEG signal sampling
frequency to 64Hz, which can reduce data redundancy and
memory footprint. The downsampling can also speed up the
training process. Then we split the continuous EEG into
many two seconds segments. By means of the dataset seizure
annotation, we can easily distinguish between interictal and
ictal phase. We use a one-second sliding window to get seizure
segments in the ictal phase. Because most of the time there
is no seizure, there are much more non-seizure segments than
seizure ones. So we have to randomly sample from interictal
phase to get a certain amount of non-seizure sample. The ratio
of negative and positive samples in our experiment is six.

All of the operations of these experiments were performed
in the environment of PYTHON 3.6.1 and PYTORCH 1.5.0,
running on an Intel core processor with a frequency of 3.40
GHz using an Nvidia TITAN RTX GPU.

C. Measurements

In our experiments, five statistical indicators are used for
the performance evaluation of the proposed method. Some
indicators are defined as follows:

Sensitivity =
TP

TP + FN
, (6)

Specificity =
TN

TN + FP
, (7)

Accuracy =
TP + TN

TP + TN + FP + FN
, (8)

Precision =
TP

TP + FP
, (9)

F1-score =
2 · Sensitivity · Precision
Sensitivity + Precision

(10)

where TP (true positive) represents the number of cases
correctly identified as seizure; FP (false positive) represents
the number of cases incorrectly identified as seizure; TN (true
negative) represents the number of cases correctly identified as
non-seizure; and FN (false negative) represents the number
of cases incorrectly identified as non-seizure.

We also use ROC and AUC for performance evaluation.
The ROC Curve measures how accurately the model can
distinguish between two classes, and AUC measures the entire
area underneath the ROC curve.



TABLE II
Results on the Bonn Dataset.

Method Case I Case II
Accuracy(%) F1-score(%) Sen(%) Spe(%) Accuracy(%) F1-score(%) Sen(%) Spe(%)

EMD+SVM [36] 0.9812 0.9658 - - 0.9362 0.9273 - -
CWT+SVM [37] 0.9910 0.9756 - - 0.9522 0.9517 - -

Deep ConvNet [4] 0.9874 0.9627 - - 0.9285 0.9132 - -
Statistic+DNN [34] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Bi-LSTM+GAP [35] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CW-SRNet (Ours) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 Here Sen means Sensitivity and Spe means Specificity.

D. Results

a) Results on the Bonn Dataset: For the Bonn Dataset,
results are shown in Table II. The empirical mode decom-
position (EMD) based analysis and the continuous wavelet
transform (CWT) are commonly used baseline methods. Deep
ConvNet is a deep learning model designed for the EEG
decoding. In the case I and case II, our proposed model
achieves the best result with accuracy 1.0 and F1-score 1.0,
the same as previous models in [34] and [35].

TABLE III
Results on the CHB-MIT Dataset for the Single Patient

patient Sensitivity(%) Specificity(%) Accuracy(%)

1 98.95 99.58 99.53
2 93.55 99.80 99.61
3 96.39 99.79 99.53
4 97.14 99.80 99.62
5 100 99.38 99.45
6 87.50 100 99.71
7 96.00 99.90 99.62
8 92.86 98.98 98.09
9 94.23 99.90 99.61
10 100 99.90 99.91
11 99.38 99.40 99.39
20 98.04 99.59 99.51
21 100 99.80 99.80
22 100 99.80 99.80
23 98.70 99.59 99.53

Average 96.84 99.68 99.51

b) Results on the CHB-MIT Dataset: For the CHB-MIT
Dataset, our results are shown in Table III. Almost for all
patients, the specificity and accuracy are higher than 99%.
This is partly because of the imbalanced data, which makes the
model more inclined to predict negative samples. Our model
achieves an average sensitivity of 96.84%. Table IV shows the
result of other methods. We can see that our model achieves
state-of-the-art performance.

V. DISCUSSIONS

A. Effectiveness of CW-Block

To further prove the effectiveness of our novel CW-Block,
we do more experiments on the CHB-MIT Dataset. Different
from the experiment for single patient presented above, we
mix the data of all patients together. Because different patients
may have different brain wave activity patterns and seizure
patterns, this mixed experiments are more difficult. The results

are shown in Table V. We choose two layers CNN (CNN2),
four layers CNN (CNN4) and ResNet18 as references. As
shown in Table V, CNN2+CW achieves a sensitivity of 83.19%
compared with 78.43% of CNN2. CNN4+CW achieves a
sensitivity of 85.71% compared with 81.38% of CNN4.
ResNet18+CW achieves a sensitivity of 96.08% compared
with 95.20% of ResNet18. And our proposed model gets
the best result with a sensitivity of 97.90%, a specificity of
98.59%, an accuracy of 98.40% and AUC of 99.60%. This
experiment successfully proves the effectiveness of the CW-
Block.

B. Effectiveness of the Focal Loss

In the definition of the focal loss function, α and γ are
two key parameters. According to the origin focal loss [27],
the optimal parameter values are α = 0.5 and γ = 2. We did
further experiments to find the optimal parameters. The results
are shown in Table VI. We can see that the model performance
fluctuates with changes in parameters. When α = 0.75 and
γ = 1 we can get the best result with a sensitivity of 97.90%,
a specificity of 98.59%, an accuracy of 98.40% and AUC of
99.60%, higher than the binary cross entropy loss (BCE Loss)
result.

C. Visualization of Channel Weights

In order to see the role of different EEG channels more
intuitively, we visualized the EEG signals and channel weights.
We selected the third patient from the CHB-MIT dataset as
an illustration. Figure 5 is the normal EEG and Figure 6
shows the epileptic seizure waveform after high-pass filtering
with a frequency of 10. Notice that the middle section of the
waveform changes drastically because of seizures in Figure
6 and only parts of channels have significant signal changes.
On the right side of the Figure 6 we show the corresponding
channel weights obtained by our model. We can see that
channels more related to epileptic seizures are given higher
weights, and irrelevant channels have lower weights. We can
understand the role of CW-Block in this way, that is, by
lowering the weight of channels that are not relevant to
epilepsy, we can eliminate interference signals and get more
accurate detection results.

VI. CONCLUSION

In this paper, we propose a seizure detection model, CW-
SRNet. To effectively use multi-channel signals, we design



TABLE IV
Results of Methods in Comparison on the CHB-MIT dataset

Method Subjects Duration (h) Sensitivity Specificity Accuracy

Dyadic WT+LDA [38] 18 152.80 92.60 99.90 -

Discrete WT [39] 18 76.92 91.71 92.89 92.30

CNN+MIDS [10] 23 - 74.08 92.46 -

Bi-LSTM [25] 24 877.39 93.61 91.85 -

CE-STNet [33] 21 - 92.41 96.05 95.96

CW-SRNet (Ours) 15 590.58 96.84 99.68 99.51

TABLE V
Experiment Results of CW-Block on the Mixed CHB-MIT Dateset

Method Sensitivity(%) Specificity(%) Accuracy(%) AUC(%)

CNN2 78.43 92.19 88.37 93.04

CNN2+CW 83.19 92.98 89.70 94.47

CNN4 81.38 91.27 88.57 93.49

CNN4+CW 85.71 91.15 89.41 94.98

ResNet18 95.20 98.14 97.07 99.45

ResNet18+CW 96.08 98.32 97.26 99.50

CW-SRNet 97.90 98.59 98.40 99.60
1 Here CW refers to the CW-Block we proposed .

TABLE VI
Influence of the Values of (α, γ) in the Focal Loss

(α,γ) Sensitivity(%) Specificity(%) Accuracy(%) AUC(%)
(0.05, 1) 86.13 99.23 95.59 99.36
(0.05, 2) 88.26 98.77 95.93 99.38
(0.05, 5) 90.95 98.67 96.58 99.49
(0.1, 1) 92.58 98.36 96.75 99.54
(0.1, 2) 90.23 98.27 96.10 99.07
(0.1, 5) 92.56 98.94 97.21 99.49

(0.25, 1) 86.39 99.40 95.78 99.53
(0.25, 2) 93.55 98.37 97.07 99.48
(0.25, 5) 93.55 98.64 97.26 99.53
(0.5, 1) 93.54 98.19 96.90 99.46
(0.5, 2) 96.86 97.38 97.24 99.55
(0.5, 5) 93.10 98.54 97.07 99.47

(0.75, 1) 97.90 98.59 98.40 99.60
(0.75, 2) 96.68 96.28 96.39 99.42
(0.75, 5) 0.9346 98.01 96.78 99.32

BCE Loss 96.01 97.63 97.19 99.48

a novel channel-weighted block (CW-Block) to automatically
capture the EEG channel importance. The multi-channel raw
EEG signals are sent to the first 2D CW-Block to get the
weights for each EEG channel. Then we alternately add SE
Blocks and 3D CW-Blocks to the 18-layer residual network.
Finally the model outputs the epilepsy detection results. The
classification performance has been evaluated on two public
seizure datasets. Our proposed method achieves an accuracy of
100% on the Bonn dataset and achieves an average sensitivity

Fig. 5. An example of interictal EEG waveform from the CHB-MIT dataset
after high-pass filtering with a frequency of 10.

of 96.84%, an average specificity of 99.68%, an average
accuracy of 99.51% on the CHB-MIT dataset, which are the
state-of-the-art results. These experiments convincingly prove
the effectiveness of our proposed epilepsy detection model.

REFERENCES

[1] F. Mormann, R. G. Andrzejak, C. E. Elger, and K. Lehnertz, “Seizure
prediction: the long and winding road,” Brain, vol. 130, no. 2, pp. 314–
333, 2007.

[2] World Health Organization, “A report about epilepsy,” 2016, Available
at: https://www.who.int/news-room/fact-sheets/detail/epilepsy.

[3] M. Ahmad, M. Saeed, S. Saleem, and A. M. Kamboh, “Seizure detection
using EEG: A survey of different techniques,” in 2016 International
Conference on Emerging Technologies (ICET), pp. 1–6, 2016.

[4] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
“Deep learning with convolutional neural networks for EEG decoding
and visualization,” Human Brain Mapping, vol. 38, no. 11, pp. 5391–
5420, 2017.

[5] J. S. Smith, “The local mean decomposition and its application to EEG
perception data,” Journal of the Royal Society Interface, vol. 2, no. 5,
pp. 443–454, 2005.

[6] J. Jin, X. Wang, and B. Wang, “Classification of direction perception
EEG based on PCA-SVM,” in Third International Conference on
Natural Computation (ICNC 2007), vol. 2, pp. 116–120, 2007.

[7] P. Celka and P. Colditz, “A computer-aided detection of EEG seizures
in infants: a singular-spectrum approach and performance comparison,”
IEEE Transactions on Biomedical Engineering, vol. 49, no. 5, pp. 455–
462, 2002.

[8] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure
detection in the newborn: methods and initial evaluation,” Electroen-
cephalography and Clinical Neurophysiology, vol. 103, no. 3, pp. 356–
362, 1997.



Fig. 6. The figure on the left is an example of epileptic seizure waveform from the CHB-MIT dataset after high-pass filtering with a frequency of 10, and
the figure on the right is the corresponding channel weights obtained by our model.

[9] S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based
medical image classification for disease diagnosis,” Journal of Big Data,
vol. 6, no. 1, pp. 1–18, 2019.

[10] Z. Wei, J. Zou, J. Zhang, and J. Xu, “Automatic epileptic EEG detection
using convolutional neural network with improvements in time-domain,”
Biomedical Signal Processing and Control, vol. 53, p. 101551, 2019.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[12] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7132–
7141, 2018.

[13] A. Liu, J. Hahn, G. Heldt, and R. Coen, “Detection of neonatal
seizures through computerized EEG analysis,” Electroencephalography
and Clinical Neurophysiology, vol. 82, no. 1, pp. 30–37, 1992.

[14] B. Boashash and S. Ouelha, “Automatic signal abnormality detection
using time-frequency features and machine learning: A newborn EEG
seizure case study,” Knowledge-Based Systems, vol. 106, pp. 38–50,
2016.
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