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Abstract. Occam’s Razor principle suggests preference for simpler mod-
els and triggers an enduring question: what is the proper definition of
complexity of a model? In this work, we regard neural networks as com-
munication channels and measure the complexity of neural networks by
means of their channel capacity—the maximum information reserved
in the output of a neural network. Furthermore, we show a connection
between the L2-norm of the weight matrix of the linear model and its
channel capacity through the singular values of the weight matrix. On im-
age classification problems, we find regularizing different neural networks
by constraining their channel capacity effectively boosts the generalization
performance and outperforms other information-theoretic regularization
methods.
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1 Introduction

Inductive biases are necessary for machine learning and one of the most famous
examples would be Occam’s Razor : the simplest explanation is best. From the
perspective of deep learning, a simpler model may refer to a network with fewer
parameters/connections [17], a network with smaller norm [16], or a network with
shorter minimal description length [12]. Following the simple intuition that the
output of a simple model should contain fewer information about the input, in
this work we regard neural networks or their modules/layers as communication
channels and propose to view the channel capacity as a measure of model
complexity.

In information theory [5], communication means messages/data/signals, de-
noted as a random variable W , successively get through an encoder, a communica-
tion channel, and a decoder. Analogous to this communication process, an input
to a neural network is an instantiation of a class label, and after representation
learning through a neural network (corresponding to a communication channel),
the recovered label is obtained by a classifier (corresponding to a decoder).
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The channel capacity is defined as the maximum mutual information between
channel input X and channel output Y , maximized over all possible input distri-
butions. In this work, we define two versions of information complexity (IC)
of neural networks. Maximum information complexity (MIC) of a neural
network means the channel capacity of the corresponding communication channel.
For boundness of this quantity, we constrain the possible distributions of the
input to be those from a certain subset of absolutely continuous distributions
(corresponding to a continuous random variable) and assume an extra noise
added to the output. By assuming that the input distribution itself is drawn
from a measure space and then changing the maximization over all distribu-
tions to expectation, we get the second version, called expected information
complexity (EIC), of neural networks for practical use.

It needs to be clear that analysis of mutual information (MI) between
the input and the representation is nothing new for machine learning. InfoMax
principle [18] argues that the goal of representation learning should be to learn a
representation Z = g(X) such that the MI I(X, g(X) is maximized. Some recent
state-of-the-art self-supervised learning methods [24, 11] aim at maximizing the
MI between features of different views of the input, while this objective can be
treated as a lower bound of the InfoMax objective [27]. Information bottleneck
principle (IB) [25] suggests that supervised learning should attempt to learn
a representation Z being maximally expressive about the label Y while being
maximally compressive about the input X, which has been recently rephrased
in the context of deep learning [26]. The learning objective of IB is to minimize
L(pθ(z|x)) = I(Z,X)−βI(Z, Y ), where model parameter θ belongs to a condition
distribution and β controls the tradeoff. Following this principle, a thread of
research [22, 21] analyzes the training of neural networks using information planes
and discusses the relationship between generalization and compression. Also IB
can be directly applied to train neural networks [15, 1]. Hafez-Kolahi and Kasaei
[9] provides a survey about IB and its applications.

Previous works mostly draw lessons from data compression of information
theory, whereas this work treats neural networks as communication channels. To
verify the usefulness of this perspective, we train neural networks regularized
with lower information complexity, supposing that a neural network with lower
channel capacity can convey more task-relative information when it fits training
data equally well as other models.

Our main contributions are as follows:

– We formally define two kinds of new complexity measures for neural networks.

– We design two regularization methods by penalizing the neural network of
high channel capacity during training.

– Experiments on various settings show that our methods do improve classifica-
tion performance and outperform other information-theoretic regularization
methods.
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2 Related Work

MacKay [19] viewed neural network learning as communication and fostered
research on the capacity of a single neuron. Parameters of a neural network are
treated as a message in [19] while corresponding to a communication channel
in our work. Foggo and Yu [7] investigated the maximum MI supθ I(X,Zθ),
where θ is the set of parameters of a neural network, for various neural network
architectures. In this work, the channel capacity of neural networks is also
the maximum MI maxpX

I(X,Z), however, with respect to all possible input
distributions.

Our work involves the calculation of MI between high dimensional random
vectors, which is a notoriously hard problem. Classic techniques [8, 28] proposed to
estimate MI through samples are hard to scale up to dimensionality encountered
in deep learning. To overcome the difficulty, recent works [1, 3] develop MI
estimators for DNNs with different variational bounds of MI.

In the context of supervised learning, our work is related to recently proposed
information-theoretic regularization methods [23, 1, 20]. Szegedy et al. [23] tried
to smooth the label to prevent models from assigning full probability to each
training example. Similar to label smoothing, confidence penalty method of
Pereyra et al. [20] proposed to regularize networks with an extra loss term, which
penalizes networks for having low entropy predictive distributions. Alemi et al.
[1] attempted to regularize neural networks by constraining the MI between the
input and the representation.

3 Information Complexity of Neural Networks

We first introduce some concepts from information theory. We denote random
vectors with capital letters such asX. All the logarithms in this paper are in base e.
In this work, we use ACn to denote the set of all n-dimensional continuous random
vectors and PDn to denote the set of all probability density function (pdf)
of n-dimensional continuous random vectors. Beside, we use X ∼ N (m,K) to
indicate that X is a gaussian random vector with mean m and covariance matrix
K. The differential entropy of the random vectorX is h(X) = −

∫
p(x) log p(x)dx,

where p(x) is the pdf of X. The mutual information between random vectors X

and Y is I(X,Y ) =
∫
p(x, y) log p(x,y)

p(x)p(y)dxdy.

3.1 Information Complexity of Neural Networks

In this subsection, we give formal definitions of two version of information com-
plexity of neural networks. In information theory, a discrete-time memoryless
communication channel corresponds to a regular conditional probability mathe-
matically, which can be used to construct a joint distribution of the input and the
output. For a set A of all possible distributions of input, the channel capacity
of a communication channel [5] is: C = maxpX∈A I(X,Y ), where X is the input
and Y is the output of the channel. Capacity describes the ability of the channel
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to transport information, which is also intuitively important to understand neural
networks. Treating a neural networks as a communication channel, we need to
explain how the neural network defines a regular conditional probability and
what the set of possible input distributions is.

Let a n-dimensional random vector X ∈ ACn be the input of a neural network.
Let θ be the parameter of the neural network, corresponding a continuous function
fθ(x) : Rn → Rm. Let the m-dimensional random vector Y be the output of the
neural network. In this work, we assume the output Y (X, θ, ε) = fθ(X) + ε is a
function of the random vector X, parameter of the network θ and an extra noise
ε.

Add noises to the output of neural networks. A straightforward idea
making connections between a neural network and a communication channel
is to define Y = fθ(X). Because fθ(x) is continuous, it’s easy to prove that
this model relates to a communication channel. In this work, we analyze neural
networks with extra noise ε 6= 0. When the distribution of the input is absolutely
continuous with respect to some convex subset of Rn, MI between the input
and the representation is infinity for some most practical deterministic neural
networks and almost every choice of weight matrices [2]. To avoid the infinity of
MI, we add an extra noise ε ∈ ACm to the output of a neural network following
the suggestion of [2].

Limit the set of possible distributions of the input. It’s a well-known
fact [5] that the channel capacity of a gaussian channel is infinite if we don’t
constrain the signal-to-noise rate (SNR). In this work, we follow the maximum-
input-power constraint from information theory and define the allowable input
pdfs as those from An

P = {p(x)
∣∣ p ∈ PDn,

∫
Rn xTxp(x)dx ≤ P}. This constraint

is reasonable because the input of neural networks often takes values in intervals,
e.g., [0, 1].

Suppose the pdf of a fixed noise is denoted as pε(·). The joint distribution
of X and Y is totally determined by the pdf of input pX and the parameter
of neural network θ, which corresponds to a conditional pdf of Y given X,
pθ(y|x) = pε(y − fθ(x)). Consequently, the MI between X and Y is determined
purely by pX and θ, which can written as:

I(X,Y ) =

∫

Rn×Rm

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

=

∫

Rn×Rm

pθ(y|x)p(x) log
pθ(y|x)
p(y)

dxdy

=

∫

Rn×Rm

pθ(y|x)p(x) log
pθ(y|x)∫

Rn p(x)pθ(y|x)dx
dxdy.

Therefore we also write MI(pX , θ) = I(X,Y ) to denote MI between the input
and the output. Beside a fixed noise, we restrict possible input random vectors X
to those correspond to pdfs pX ∈ An

P . Now we are ready to define the maximum
information complexity (MIC) of neural networks.

Definition 1 (Maximum information complexity). Given a random vector
ε ∈ ACm and a neural network fθ(x) : Rn → Rm, the maximum information
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complexity with noise ε of the neural network is:

MICε(θ) := max
pX∈An

P

MI(pX , θ).

Calculation of MIC requires solving an optimization problem over a function
space, which makes it difficult to be used in practice. In order to overcome this
difficulty, we define a similar concept called expected information complexity. Let
A be the set of all possible pdfs of input random vectors. Assuming A belongs to
a probability space (A,FA,PA), we can define expected information complexity
of neural networks in a general way:

Definition 2 (Expected information complexity). Let a random vector ε ∈ ACm

and let (A,FA,PA) be a probability space that satisfies: (1) the corresponding
sample space A is a subset of PDn and (2) the functional MI(·, θ) : A → [0,∞)
is a random variable for all θ. We define the expected information complexity
with noise ε and the probability space (A,FA,PA) of a neural network fθ(x) :
Rn → Rm to be:

EICε,PA(θ) := E[MI(pX , θ)] =

∫
MI(pX , θ)dPA.

3.2 Special Case: Single Layer Neural Networks without Activation

In this subsection, we derive the close-form expression of MIC of a simple neural
network which is just a linear function fθ(x) = Wx, where W ∈ Rn×m is the
weight matrix. Let X be the input whose pdf belongs to An

P and let ε ∼ N (0, Im)

be the noise injected to the latent representation of the neural network Ŷ = fθ(X).
The output of the neural network is Y = fθ(X) + ε. Known as gaussian vector
channel, this kind of models is well studied in the context of network information
theory [6]. The next theorem gives the value of the channel capacity of a gaussian
vector channel, which is also MIC of the corresponding neural network.

Theorem 1 (MIC of linear neural networks [6]). Given a linear neural network
fθ(x) = Wx and a gaussion noise ε ∼ N (0, Im). If the rank of W is d (> 0) and
the positive singular values of W are γ1, . . . , γd in descenting order, the maximum
information complexity is

MICε(W ) =
1

2
log(λk

k∏

i=1

γ2
i ),

where λ is chosen such that
∑d

i=1 max{λ− 1
γ2
i
, 0} = P (where P is the constant

of An
P ) and k is the number of singular values γi that satisfies λ > 1

γ2
i
.

Proof. See the discussion in section 9.1 of [6]
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The MIC of linear neural networks is only related to the singular values of the
weight matrix. For comparison, weight decay method [16] constrains the L2-norm
of the weight matrix by introducing an extra loss 1

2‖W‖2F = 1
2 tr(W

TW ) =
1
2

∑d
i=1 γ

2
i , where ‖ · ‖F is the Frobinus norm. Yoshida and Miyato [29] proposed

to constrain the spectral norm of the weight matrix by introducing an extra loss
1
2‖W‖22 = 1

2γ
2
1 , where ‖ · ‖2 is the spectral norm. Note that weight decay method

and spectral norm regularization show some connections to MIC of the model:

log(λk
k∏

i=1

γ2
i ) ≤

k∏

j=1

(
1

k
(P +

k∑

i=1

1

γ2
i

)γ2
j )− 1

≤
k∏

j=1

(Pγ2
j + 1)− 1

≤ (P‖W‖2F + 1)d − 1 ≤ (Pd‖W‖22 + 1)d − 1.

The first inequality is obtained because log(x) ≤ x− 1 and λ = 1
k (P +

∑k
i=1

1
γ2
i
).

The second inequality holds because 1
γ2
i
− 1

γ2
j
< P for all 1 ≤ i, j ≤ k. We can see

that the MIC measure is tighter than the Frobinus norm and the spectral norm
of W .

3.3 Information Complexity Regularization

In this subsection, we describe how to use information complexity to regularize
neural networks.

A general learning framework. Suppose the set of learnable parameters of a
neural network is θ and the origin learning objective is to minimize a loss function
L(θ, S) where S is the training dataset. Information complexity regularization
methods introduce extra terms to construct a new learning objective:

min
θ

L(θ, S) + βeEICε,PA(θ) + βmMICε(θ),

where the βe and βm controls the strength of regularization.

A version of EIC. At first, we show how to construct a probability space on
which we can define EIC. In general, a basic idea is to parameterize the set of
all possible pdfs of the input random vector and then define a prior distribution
on the parameter space. We show a simple example about this strategy and
use this version of EIC in our experiments. Suppose the random vector V is
uniformly distributed on the n-dimensional hyperrectangle HR : HR = {x ∈
Rn

∣∣ 1
2 ≤ xi ≤ 1 for all 1 ≤ i ≤ n}. Let G(v) = pv : HR → PDn map a vector v

to the pdf of the gaussian random vector with mean 0 and covariance matrix Inv.
With the random vector V and the map G(v), it’s straightforward to construct a
probability space on NA = G(HR), which we denote (NA,FNA,PNA). In this
case, the EIC of a neural network is : EICε,PNA(θ) = E[MI(G(V ), θ)], where
G(V ) is the pdf of the input random vector.
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An upper bound of EIC of neural networks. In this work, we use a sampling
method to minimize an upper bound of EIC in practice instead of minimizing
the exact value of EIC. We can derive an upper bound of EIC:

EICε,PA(θ) = E[I(X,Y )] = E[h(Y )− h(Y |X)] = E[h(Y )]− C

≤ E
[
1

2
log((2πe)mdet(KY ))

]
− C = E

[
1

2
log det(KY )

]
− C

′

≤ 1

2
E[tr(KY )]− C

′′
,

where det means the determinant of a matrix and tr means the trace of a matrix.
The first inequality holds because the maximum-entropy distribution for a given
covariance is Gaussian with the same covariance [5]. The second inequality is
true because det(KY ) is the product of singular values of KY and tr(KY ) is the
sum of the singular values.

In order to minimize E[tr(KY )], we sample n pdfs (p
(1)
X , . . . , p

(n)
X ) of the

input random vector based on (A,FA,PA). Then we use each pdf p
(i)
X to get

k samples of the input (x̂i1, . . . , x̂ik), which are fed into the neural network to
get the samples of the output (ŷi1, . . . , ŷik). The sampled outputs are used to
approximate E[tr(KY )]:

E[tr(KY )] =

∫
EY∼pY

‖Y − EY∼pY
[Y ]‖2dPA

≈ 1

kn

n∑

i=1

k∑

j=1

‖ŷij −
1

k

k∑

l=1

ŷil‖2

, t̂r,

where ‖ · ‖ means the L2-norm of a vector. It’s easy to calculate the gradient of
t̂r with respect to model parameters.

A surrogate of MIC of neural networks. We also use a sampling method
to minimize a surrogate of MIC in practice. As mentioned before, the MIC of
linear neural networks has an upper bound

∏k
j=1(

1
k (P +

∑k
i=1

1
γ2
i
)γ2

j ), which is a

polynomial of singular values and the ratios between them.
Suppose the singular value decomposition of W is UΣV T . Let X ∼ N (0, In)

and let X
′
= V TX, X

′′
= X

′

‖X′‖ . Meanwhile, we have the following equations:

‖Wx‖
‖x‖ =

‖UΣV TV x
′‖

‖V x′‖ =
‖UΣx

′‖
‖x′‖ = ‖UΣx

′′‖ =

√√√√
d∑

i=1

γ2
i (x

′′
i )

2.

It’s straightforward to see that X
′′
is a random vector having uniform distribution

on {x ∈ Rn | ‖x‖ = 1}. Given X ∼ N (0, In), we minimize E
[
‖Wx‖
‖x‖

]
to constrain
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the singular values and minimize V
[
‖Wx‖
‖x‖

]
, where V[·] means the variance, to

limit the diversity of singular values.
Furthermore, we hypothesize that minimizing the surrogate of MIC of general

neural networks fθ:

MICS = E
[‖fθ(x)‖

‖x‖

]
+ V

[‖fθ(x)‖
‖x‖

]
,

is an effective way to constrain the MIC. The sampling method to estimate MICS

is straightforward and we minimize the estimator M̂ICS in our experiments.

Discussion. Note that we don’t need to access the training data to calculate t̂r

and M̂ICS. It’s worth mentioning that our method is not limited to constrain
the information complexity of the whole network. By viewing each block (e.g.
first n layers of a neural network network) as a tiny neural network, we can
impose multiple information complexity regularizer terms for more flexibility.

4 Experiments

In this section, we evaluate our methods on various image classification datasets:
MNIST, Kuzushiji-MNIST, SVHN and CIFAR10 3. All models are implemented
using PyTorch and trained on a single NVIDIA GeForce RTX 2080TI GPU.

4.1 Benchmark Experiments

We first experiment our regularization methods on various image classification
datasets: MNIST, Kuzushiji-MNIST, SVHN, and CIFAR-10.

Settings. For MNIST and Kuzushiji-MNIST, we train three-layer MLPs with
fully connected layers of the form 784–1024–1024–10 and the ReLU activation
function. The batchsize is set as 100. For MNIST and Kuzushiji-MNIST, all
models are trained using ADAM optimizer [14] with an initial learning rate
0.001 for 200 epochs and we decay the learning rate by a factor of 0.97 every 2
epochs. We train ResNet-20 from [10] for SVHN and ResNet-44 for CIFAR10.
The batchsize is set as 128. ResNets are trained using Nesterov’s accelerated
gradient descent [4] with momentum 0.9 for 160 epochs. For SVHN and CIFAR10,
we set the initial learning rate as 0.1 and decay the learning rate by a factor of
0.1 once the half and the three quarters of the training process have passed. For
all datasets, we also report results by adding weight decay (WD).

Our methods include MIC regularization method (train networks with an

extra loss M̂ICS) and EIC regularization method (train networks with an extra
loss t̂r). We impose constraints on both the IC of whole network and the IC of each

3 The code is available at https://github.com/IanyePKU/IC-Regularization-methods
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Table 1. Experimental results on benchmark datasets.The average and standard
deviation of the accuracy of each method over 3 trials. We compare “baseline”, “+MIC”
and “+EIC” and the best one is shown in boldface. The best result for each dataset is
shown with underline.

Dataset Model & Setup baseline +MIC +EIC

MNIST MLP 98.56%(0.03) 98.87%(0.03) 98.86%(0.05)

MNIST MLP +WD 98.69%(0.02) 98.78%(0.05) 98.78%(0.03)

Kuzushiji MLP 93.53%(0.08) 93.94%(0.13) 94.16%(0.11)

Kuzushiji MLP +WD 93.40%(0.09) 93.74%(0.07) 93.85%(0.22)

SVHN ResNet20 95.45%(0.12) 95.59%(0.09) 95.60%(0.04)
SVHN ResNet20 +WD 95.73%(0.09) 95.89%(0.09) 95.93%(0.05)

CIFAR10 ResNet44 85.76%(0.23) 86.11%(0.17) 86.56%(0.33)
CIFAR10 ResNet44 +WD 87.91%(0.08) 87.95%(0.10) 88.10%(0.17)

layer and assume that all noises obey the gaussian distribution. In all experiments,
we perform the hyper-parameter search for βe and βm with candidates from
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. For EIC method, we use the probability space
(NA,FNA,PNA) to estimate t̂r, implying that we expect fewer information
is preserved in the outputs of the neural network when the inputs are from a
gaussian distribution.

Results. The test error rate obtained by each method is summarized in Table 1.
The best result for each dataset is always achieved by the models trained with IC
regularization methods. For SVHN and CIFAR10, combining our methods with
weight decay has complementary effects. Introducing an extra IC regularization
term always improves performance, which justify the usefulness of our methods.

As shown in Fig. 1, training curves of models trained with our methods
are usually serrated, which means that our models frequently escape from the
regions with low training loss. We think that this feature of our methods helps
models leave local minimum and achieve better generalization performance. The
phenomena is potentially related to a recent observation [13] that zero training
loss is not the final goal of the training process.

4.2 Comparison Experiment with other regularizaion methods

In order to verify the compatibility between our method with other regularization
methods and compare our method with them, we train MLPs on MNIST using
various combinations of regularizers. All settings of hyperparameters are same
as the previous benchmark experiments. Other regularization methods used for
comparison include:

– Weight Decay: Add an extra loss to constrain the L2-norm of parameters of
the neural network. We set the regularization factor βL2 = 10−4.

ICANN2021, 379, v2 (final): ’Channel Capacity of Neural Networks’ 9
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Fig. 1. Training curves of MLPs on MNIST. The top two figures show the training
curves of MLPs using only our regularization terms. The bottom two figures show the
training curves of MLPs using our regularization terms and weight decay.

– Confidence Penalty (CP): Penalize low entropy output distributions. We
search for the best regularization factor βCP from {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
as [20].

– Label Smoothing (LS): Minimize the KL divergence between uniform dis-
tribution and the network’s predicted distribution.We search for the best
regularization factor βLS from {0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 8.0} as [20].

– Variational Information Bottleneck (VIB): Train neural networks using varia-
tional information bottleneck principle and minimize an upper bound of MI
between the input of the network and the corresponding representation. We
search for the best regularization factor βV IB from {10−2, 10−3, 10−4, 10−5},
which is a reasonable set according to [1].

Result. The test accuracy obtained by each method is summarized in Table 2.
Setup of using only MIC (average of accuracy is 98.87%, see Table 1) outperforms
setups of combining other regularization terms (first two column of results from
Table 2). Combining IC regularization terms further improves the performance
and the model trained using CP and MIC achieves the best performance (average
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Table 2. Experimental results on MNIST. The average and standard deviation of the
accuracy of each method over 3 trials. For each regularization method, we compare “No
other reg”, “+WD”, “+MIC” and “+EIC” and the best one is shown in boldface.

Method No other reg +WD +MIC +EIC

CP 98.65%(0.02) 98.86%(0.03) 98.97%(0.02) 98.95%(0.04)
LS 98.79%(0.07) 98.85%(0.05) 98.93%(0.05) 98.93%(0.01)
VIB 98.66%(0.04) 98.80%(0.05) 98.88%(0.01) 98.81%(0.01)

of accuracy is 98.97%). This experiment shows that introducing an information
complexity term boosts the generalization performance of trained neural networks
and is compatible with other regularization methods.

5 Conclusion

In this paper, we have defined two kinds of new complexity measures for neural
networks by linking each neural network to a communication channel. We showed
a connection between the MIC of a single layer linear neural network and the
L2-norm of its weight matrix. We also designed two new regularization methods
using EIC and MIC. We conducted experiments on image classification datasets
and showed the usefulness of our new regularization terms empirically.
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