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Abstract—Brain lesion segmentation plays a crucial role in
diagnosis and monitoring of disease progression. DenseNets have
been widely used for medical image segmentation, but much
redundancy arises in dense-connected feature maps and the
training process becomes harder. In this paper, we address the
brain lesion segmentation task by proposing a Dense-Gated U-
Net (DGNet), which is a hybrid of Dense-gated blocks and U-
Net. The main contribution lies in the dense-gated blocks that
explicitly model dependencies among concatenated layers and
alleviate redundancy. Based on dense-gated blocks, DGNet can
achieve weighted concatenation and suppress useless features.
Extensive experiments on MICCAI BraTS 2018 challenge and
our collected intracranial hemorrhage dataset demonstrate that
our approach outperforms a powerful backbone model and other
state-of-the-art methods.

Index Terms—Brain lesion segmentation, U-Net, dense connec-
tions, dense gates

I. INTRODUCTION

The huge amounts of medical images have necessitated

the use of computers and artificial intelligence to process

and analyze. Medical image segmentation algorithms play a

vital role in various biomedical-imaging applications, such as

the quantification of diagnosis, location of lesion, analysis

of anatomical structure and treatment planning. Additionally,

manual annotation of lesion regions is quite time-consuming

and tedious for doctors. Therefore automatic algorithms for

medical image segmentation are essential.
In medical image segmentation tasks, semantic information

from shallow layers and deep layers are usually combined for

more accurate results. Residual skips [1] and dense connec-

tions [2] emerged as popular approaches to strengthen feature

propagations among different layers. Residual skips are to

employ residual connections between the encoder and decoder,

like U-Net [3]. Dense connections are to densely connect each

layer with its all preceding layers, like DenseNet. Specifically,

DenseNet has been widely used and achieved state-of-the-art

results in various medical segmentation challenges, such as

volumetric brain segmentation [4].
However, much redundancy caused by dense connections

from preceding layers remains a challenging task. We argue

that inherent inefficacy exists in the DenseNet architecture de-

sign. Specifically, in one dense block, each layer is connected
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to every other layer in a feed-forward manner, which results

in the redundancy of features and a waste of computation

time. For example, when a deep network is applied to seg-

ment an image, color, shape and texture information are all

processed together and equally. But we feel that shapes are

more important to obtain detailed object boundaries, while

color and texture might contain irrelevant information for

segmentation. Another aspect is that it is well known that

with skip connections, the mainstream module only produces

residual additive outputs. But for many dense connections

from previous layers, it is unclear what a role the mainstream

module plays.

In order to address these issues of DenseNet, we intro-

duce a gating mechanism to model the layer relationships in

densely connected blocks. This idea is inspired by SENet [5].

Dense-gated blocks can learn optimal importance weights of

varying dense-connected layers, and the learned weights can

help enhance the feature maps from informative layers and

suppress redundant contents. Instead of simple concatenations

of dense connections used in DenseNet, our gating mechanism

alleviates redundancy and makes the training process easier.

Similar gating mechanisms have been proposed for semantic

segmentation tasks, such as Attention Gates [6] and CBAM

[7]. These prior works employ adaptive feature pooling to

focus on local image regions, or model the interdependence

between feature channels. Different from previous studies, our

method pays more attention to the weighted concatenation of

layers, instead of spatial or channel attention on feature maps.

Our contributions are summarized as follows:

1) We propose a novel dense-gated block, which leverages

the gating mechanism to reweight each dense connections

of previous layers. Gates are learned for enhancing useful

connections and suppressing useless others. We then apply

dense-gated blocks to U-Net and construct the DGNet for

the task of brain lesion segmentation.

2) Extensive experiments are conducted on two datasets —

MICCAI Multimodal Brain Tumor Segmentation Challenge

(BraTS) 2018 and our collected intracranial hemorrhage

CT images dataset. Advantages and shortcomings of dif-

ferent competing methods are discussed, and we testify the

effectiveness of our proposed method over state-of-the-art

methods.978-1-7281-8068-7/20/$31.00 ©2020 IEEE



Fig. 1. Dense-gated Blocks. The c above indicates a concatenation and G indicates a gating module, with its details depicted in the right blue box. The
gating module applies global average pooling to generate a layer descriptor. Then, two 1× 1 convolutional layers are used to model layer relationships and
estimate weights of each layer. Finally, the original feature map is rescaled through multiplication.

II. METHOD

Gated Fusion. Gating is a mature mechanism to measure

the usefulness of each feature vector in a feature map and ag-

gregates information accordingly. In this paper, a dense-gated

block is designed based on the simple concatenation-based

fusion by controlling information flow with gates. Besides that

useful information can be regulated to the right place through

gates, useless information can also be effectively suppressed

on both the sender and receiver sides. Thus information

redundancy can be alleviated because the information is only

received when concatenation of the current layer has useful

features.

As illustrated in Fig.1, we change the original dense connec-

tions by reweighting each feature maps before concatenation

and design a gating module to make the network focus on more

informative feature maps. More precisely, we perform feature

compression and turn each of feature maps concatenated into

a layer descriptor. This layer descriptor has a global receptive

field in certain degrees, and the output dimension matches

the number of input characteristic concatenation. It represents

the global distribution of responses on the characteristic con-

catenation. Assuming the (l + 1)-th layer receives the feature

maps of all preceding layers, x0, x1, . . . , xl, as input and

[x0, x1, . . . , xl] represents the concatenation operation. For the

(l + 1)-th layer, a statistic z ∈ Rl is generated by squeezing

the feature maps X and zc as the c-th element of z can be

expressed as:

zc =
1

Dc ×Wc ×Hc

Dc∑
i=1

Wc∑
j=1

Hc∑
k=1

xc(i, j, k), c ∈ (0, 1, . . . , l)

(1)

Where Dc, Wc and Hc denote the number of channels, the

width and height of xc respectively.

After applying global average pooling above, we then use

1× 1 convolutional layers to explicitly model the correlation

between different layers. Parameters are used to generated

rescaling weights for each characteristic concatenation part.

To meet these criteria, the sigmoid activation is used as a

gating mechanism:

s = σ (Wbδ (Waz)) , (2)

Where Wa ∈ R
l
r×l and Wb ∈ Rl× l

r represent the parameters

of two 1 × 1 convolutional layers. δ refers to the ReLU

function, and σ is the sigmoid. r denotes the reduction ratio.

The final output is a reweight operation. It is obtained by

rescaling the transformation output X with the activations:

x̃c = sc � xc, (3)

Where X̃ = [x̃0, x̃1, . . . , x̃c], and � refers to the element-

wise product between the feature map xc ∈ RD×W×H and

the scalar sc. In this way, feature maps X are converted into

new feature maps X̃ , which contain more valid information

and less redundancy.
Dense-Gated Blocks. Since dense connections can

strengthen feature propagation, we densely connect the feature

maps in a left-right manner within a block. Each dense-gated

block has 5 convolutional layers, which is formulated as:

hl = [x0, x1, . . . , xl] , (4)

xl+1 = ϕ ([xl, gl (hl)]) , (5)

ϕ (xi) = W ∗ δ (B (xi)) , i ∈ {0, . . . , l}. (6)

Where W is the weight matrix, g denotes the gating mecha-

nism, ∗ denotes convolution operation, B(·) represents batch

normalization, δ(·) denotes ReLU for activation.
Network Architecture. The overall framework of our net-

work is shown in Fig. 2. We employ 3D U-Net with skip

layers to fuse rich scale feature maps as our baseline. Similar

to traditional U-Net, a Dense-gated U-Net has two paths: a

downward path (left-down) and an upward path (right-up).

The network consists of 4 level encoders in the downward

path, 4 level decoders in the upward path and a base level. In

the encoder path, each encoder level has a dense-gated block

(DGB) which aims at semantic feature extraction. Each layer

in the dense block can use the feature maps of all preceding

layers as inputs, and use its own feature maps as input into

all subsequent gates.

III. EXPERIMENTS

A. BraTS 2018 Dataset
Dataset. MICCAI BraTS 2018 training set and validation

set [8], [9] consist of ample multi-institutional clinically-

acquired and multi-modal MRI scans of glioblastoma (HGG)



Fig. 2. The framework of our proposed dense-gated U-Net.

and lower-grade glioma (LGG). The training set includes

totally 210 HGG patients and 75 LGG patients. Annotations

include the GD-enhancing tumor core (ET-label 4), the peritu-

moral edema (ED-label 2) and the necrotic and non-enhancing

tumor core (NCR/NET-label 1). Other pixels except these

labels (1,2,4) are labeled as 0. For the sake of convenient

description, WT, ET, TC in the following sections refer to

the Whole Tumor, the Enhancing Tumor, and the Tumor

Core, respectively. As for metrics, we use the Dice and

Hausdorff Distance to evaluate the performance of semantic

segmentations.

Implementation Details. We train our model with Pytorch

framework on NVIDIA Tesla V100 GPUs. Inspired by state-

of-the-art semantic segmentation networks, we adopt the mul-

ticlass dice loss as the loss function. Our model takes the

randomly sampled patches of size 128 × 128 × 128 voxels

as inputs and batch size is set as 2. An epoch refers to

an iteration over 250 batches, and the model is trained for

at most 500 epochs. Early stop strategy is active when the

exponential moving average of the validation loss has not been

improved within the recent 60 epochs. We used weight decay

(L2 weighting factor = 0.00001) for regularization and set the

initial learning rate as 10−4.

Qualitative Evaluation. We randomly select a MRI se-

quence from the training dataset and the segmentation results

are shown in Fig. 4(a). We can see that our model has a

promising performance for MRI slices and can accurately

separate lesion subregions out. The segmentation results of

tumor core and enhancing tumor are most impressive. Besides,

there are several vessels in the left part of the brain showing

similar features with tumors, but our model correctly segments

them as background.

Quantitative Evaluation. Quantitative evaluation results

are shown in Table I. To further verify the performance, we

TABLE I
QUANTITATIVE RESULTS ON BRATS’18. TOP: ON VALIDATION DATASET.
MIDDLE: ON TRAINING DATASET. BOTTOM: ABLATION STUDY RESULTS

ON VALIDATION DATASET.

Method
Dice Hausdorff95

ET WT TC ET WT TC

Isensee [10] 0.810 0.908 0.854 2.540 4.970 7.040
Myro [11] 0.817 0.907 0.860 3.824 4.412 6.841
McKi [12] 0.796 0.903 0.847 3.550 4.170 4.930
Zhou [13] 0.814 0.909 0.853 2.716 4.172 6.545
Our 0.818 0.912 0.862 2.703 3.901 4.595

Chen [14] 0.740 0.888 0.844 4.631 5.888 5.661
Isensee [10] 0.772 0.901 0.843 3.680 5.610 6.000
Our 0.830 0.899 0.899 2.167 3.772 3.791

Base 0.771 0.898 0.822 3.223 6.306 9.244
Base+DB 0.798 0.892 0.825 4.894 6.225 8.037
Base+DGB 0.818 0.912 0.862 2.703 3.901 4.595

Fig. 3. Visualization results of ablation study on two datasets.

compare the results of our model with state-of-the-art methods.

Note that not all work provide results on the training set,

so the comparing methods are different. Our method clearly

outperforms competing methods on the training dataset and

performs on par with the best results on the validation dataset.

Such comparative results indicate the promising accuracy of

our segmentation method and the effectiveness of our proposed

architecture.

Ablation Study. We separately compare the effectiveness

of the densely connected block and our dense-gated block.

For the non-dense structure (Base), we use the original 3D

U-Net framework without any dense blocks. For non-gated

dense Structure (Base+DB), we remove all gates in dense-

gated blocks but keep dense connection for feature reuse.

The bottom part of Table I shows the contributions of each

components on validation set. We can see improvements in

dice scores and Hausdorff distances across each tumor regions

when we add the proposed strategies gradually. Specifically,

the dense-gated block offers large gains compared with its non-

gated counterpart. Meanwhile, we also visualize the ablation

study in Fig.3(a). We can see that the original 3D U-Net

cannot segment the tumor core at all and produces many false

regions on tumor core and edema. Compared with Base+DB,

our proposed method can produce more accurate boundaries.



Fig. 4. Segmentation results. (a) BraTS’18: WT in green, ET in purple and
TC in blue. (b) Hemorrhage Dataset.

TABLE II
IOU RESULTS ON OUR COLLECTED HEMORRHAGE DATASET. TOP:

ABLATION STUDY. BOTTOM: COMPARISON WITH THE STATE-OF-THE-ART

RESULTS.

Methods Lesion Background mIoU

Base 0.673 0.995 0.834
Base+DB 0.682 0.996 0.839
Base+DGB 0.692 0.996 0.844

DeepMedic 0.683 0.997 0.840
UNet++ 0.677 0.995 0.836
DenseASPP 0.670 0.996 0.833
DeepLabv3 0.639 0.995 0.817

B. Our Collected Hemorrhage Dataset

Dataset and Preprocessing. It is made up of intracranial

hemorrhage CT images consisting of 500 collected patients

from hospitals. The Annotations include intracranial hemor-

rhage area (lesion, labeled as 1), while other pixels are all

labeled as 0. We divide the total 5000 slices into the training

set (4000 slices) and test set (1000 slices). At each epoch,

3200 slices are randomly selected and fed into our model for

training and the left 800 slices are for validation.

Results. Qualitative and quantitative results are displayed

in Fig.3(b) and Table II. From the top part of Table II, we

can see that the proposed Base + DGB version performs the

best according to the IoU measure and it can be justified

that the removal of each block impairs the overall perfor-

mance to some extent. For further comparison, we compare

our proposed framework with the state-of-the-art methods in

semantic segmentation in the bottom part of Table II. It is

noted that our method achieves better performance than other

comparing methods. To our surprise, we find that DeepLabv3

produces worse segmentation results even than our plain

baseline method, though DeepLabv3 achieves superb results

on natural image segmentation. This may reveal that there

exists a big gap between natural image segmentation and

medical image segmentation.

IV. CONCLUSION

In this paper, we introduced a dense-gated block and applied

it to U-Net for brain lesion segmentation. We proposed a

new gating mechanism to connect the intermediate layers

in original dense blocks by reweighting their concatenations.

Compared to U-Net, our DGNet is able to gather features from

previous dense connections according to the amount of infor-

mation they contain. Our experiments show that dense-gated

blocks can lead to a highly effective architecture that pro-

duces more accurate segmentation. Our method significantly

improves over the strong baseline algorithm and performs

on par with the state-of-the-art methods on the challenging

BraTS2018 dataset and our collected intracranial hemorrhage

dataset.
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