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Synonyms

Differential manifold

Related Concepts

Differential Geometry
Manifold Learning
Nonlinear Dimensionality Reduction

Definition

A manifold is a topological space that is locally
Euclidean, indicating that near every point, there
is a neighborhood that is topologically the same
as the open unit ball in R"”. A smooth manifold
equipped with an inner product on each tangent
space is called a Riemannian manifold, where
various notions such as length, angles, areas (or
volumes), curvature, and divergence of vector
fields can be defined.
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Relevance to Computer Vision

The need of using the manifold concept and
Riemannian geometry arises naturally when con-
sidering the intrinsic properties of images. It is
convenient to treat an image of size 64 x 64
as a data point in a 4096-dimensional vector
space. Then we want to measure the distance
or similarity between any two data points in
this high-dimensional space. However, using the
flat Euclidean structure in large scales seems
to make little sense in this space. If you take
two images that are very different, for example
Arnold Schwarzenegger and Hillary Clinton, you
cannot interpolate between them at all to get a
facial image. (This example is from Kilian Q.
Weinberger’s homepage). One way is to impose
some special metric in this space to make it
curved, or equivalently we can transform these
images into another feature space.

We can imagine an intuitive example of
interpolating between digits 9 and 3. By
directly doing linear interpolation in the original
Euclidean space, we get blurry images. However,
if following the curved manifolds of digits 9 and
3, we obtain a continuum of slowing morphing
from 9 to 3. And this way, the interpolated images
in the gap of two manifolds make much sense
from the aspect of human eyes.

Furthermore, Riemannian geometry may play
a role in the situations where a camera moves in
a curved path (such as a circle) or a robot arm
rotates along a given track.
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Mathematical Background

The concept of a manifold is central to many
parts of geometry and modern mathematical
physics, because it allows complicated structures
to be described and understood in terms of
the simpler local topological properties of
Euclidean space. Manifolds arise naturally in a
variety of mathematical and physical applications
as "global objects." The study of manifolds
combines many important areas of mathematics:
it generalizes concepts such as curves and
surfaces as well as ideas from linear algebra
and topology.

In mathematics, a manifold is a topological
space that locally resembles Euclidean space
around each point. Precisely, each point of an
n-dimensional manifold has a neighborhood that
is homeomorphic to an open subset of Euclidean
space R”". In other words, manifolds constitute a
generalization of curves and surfaces into high-
dimensional spaces. One-dimensional manifolds
include lines and circles, but not figure eights
“8” because they have crossing points that are
not locally homeomorphic to Euclidean 1-space.
Two-dimensional manifolds, also called surfaces,
include the plane, the sphere, and the torus, which
can all be embedded in three dimensional real
space. On the other hand, the structure of three
planes (e.g., the xy, yz, and zx planes in a xyz
coordinate chart) intersected at the origin is an
example of a non-manifold, since a neighborhood
of any intersection point is neither 2D nor 3D.

Although a manifold locally resembles
Euclidean space, globally it may not: manifolds
in general are not homeomorphic to Euclidean
space. An intuitive example is the round/flat
Earth problem: the whole surface of the sphere
is not homeomorphic to the Euclidean plane.
The ancient belief is that the Earth was flat, as
contrasted with the modern evidence that it is
round. The discrepancy arises essentially from
the fact that on the small scales, the Earth does
indeed look flat, whereas on the large scales,
the Earth surface is a sphere approximately. In
general, any object that is nearly “flat” on small
scales is a manifold. In a region it can be charted
by means of map projections of the region into
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the Euclidean plane; in the context of manifolds,
they are called charts. More concisely, any object
that can be “charted” is a manifold.

When a region appears in two neighboring
charts, the two representations may not coincide
exactly, and a transformation is needed to pass
from one chart to the other, called a transition
map. Smooth manifolds (also called differentiable
manifolds) are manifolds for which overlapping
charts "relate smoothly" to each other, meaning
that the inverse of one followed by the other is
an infinitely differentiable map from Euclidean
space to itself. Such two charts are called “com-
patible.” A differentiable manifold is a type of
manifold that is locally similar enough to a linear
space to allow one to do calculus. One may
then apply calculus while working within the
individual charts, since each chart lies within a
linear space to which the usual rules of calculus
apply. If the charts are suitably compatible (viz.,
the transition from one chart to another is differ-
entiable), then computations done in one chart are
valid in any other differentiable chart. With this
differentiable structure equipped on manifolds,
we can define the globally differentiable tangent
space, differentiable functions, and differentiable
tensor and vector fields.

Differentiable manifolds are very important in
physics. Special kinds of differentiable manifolds
form the basis for physical theories such as clas-
sical mechanics, general relativity, and the Yang-
Mills theory. It is possible to develop a calculus
for differentiable manifolds, and the study of
calculus on differentiable manifolds is known as
differential geometry.

A Riemannian metric on a differentiable man-
ifold allows distances and angles to be mea-
sured. A “Riemannian manifold” is a differen-
tiable manifold in which each tangent space is
equipped with an inner product (-, -) in a manner
which varies smoothly from point to point. Given
two tangent vectors u and v, the inner product
(u, v) gives a real number. This allows one to
define various notions such as length, angles,
areas (or volumes), curvature, and divergence of
vector fields.

Carl Friedrich Gauss (1777-1855) may have
been the first to consider abstract spaces as math-
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ematical objects in their own right. His Theorema
Egregium (Remarkable Theorem or Totally Awe-
some Theorem) gives a method for computing
the curvature of a surface without considering
the ambient space in which the surface lies. In
modern terms, the theorem proved that the Gaus-
sian curvature K = «kjkp of the surface is an
intrinsic property, where k1 and k, are principal
curvatures at one point. Since then, manifold
theory has come to focus exclusively on these
intrinsic properties (or invariants), while largely
ignoring the extrinsic properties of the ambient
space.

Bernhard Riemann (1826-1866) was the first
one to do extensive work generalizing the idea
of intrinsic geometry to higher dimensions. The
name manifold comes from Riemann’s original
German term, Mannigfaltigkeit, which William
Kingdon Clifford translated as "manifoldness."
Riemann developed his theory of higher dimen-
sions and delivered his inaugural lecture at Got-
tingen in 1854 entitled “Ueber die Hypothesen
welche der Geometrie zu Grunde liegen” (“On
the hypotheses which underlie geometry”) [1].
Riemann found the correct way to extend to n
dimensions the differential geometry of surfaces,
which Gauss (as Riemann’s tutor) proved in his
Theorema Egregium. This lecture founded the
field of Riemannian geometry.

Gauss highly appreciated Riemann’s lecture
“which surpassed all his expectations, in the
greatest astonishment, and on the way back
from the faculty meeting he spoke to Wilhelm
Weber, with the greatest appreciation, and with
an excitement rare for him, about the depth of the
ideas presented by Riemann.” [2, Vol.2, pp.134]

Riemann’s inaugural lecture was only pub-
lished 12 years later in 1868 by Dedekind, 2 years
after his death. Its early reception appears to have
been slow. But it is now recognized as one of the
most important works in geometry and specifi-
cally set the stage for Albert Einstein’s general
theory of relativity (published in 1916). Einstein
used the theory of Riemannian manifolds (for-
mally pseudo-Riemannian manifolds) to develop
his general theory of relativity. General relativity
generalizes special relativity and Newton’s law
of universal gravitation, treating the gravity of

space and time (or spacetime) as the curvature of
a Riemannian space. In particular, his equations
for gravitation are constraints on the curvature
of space-time. As Riemann laid the foundations
of the mathematics of general relativity, Rieman-
nian geometry had received extensive attention
in mathematics and theoretical physics from that
time.

For more material on the background, one can
refer to https://en.wikipedia.org/wiki/Manifold
and https://en.wikipedia.org/wiki/Riemannian_
manifold.

Theory

In the following we present formal definitions
and several elementary results [3].

Definition 1 A manifold M of dimension d is
a connected paracompact Hausdorff space for
which every point has a neighborhood U that is
homeomorphic to an open subset 2 of R?. Such
a homeomorphism x U — £ is called a
(coordinate) chart. An atlas is a family {U, x4}
of charts for which the U, constitute an open
covering of M.

Definition 2 An atlas {U,, x4} on a manifold is
called differentiable if all chart transitions

xg0xy " i xo(Uy NUg) > x5(Uy N Up)

are differentiable of class C* (in case U, NUg #
#). A maximal differentiable atlas is called a
differentiable structure, and a differentiable man-
ifold of dimension d is a manifold of dimension
d with a differentiable structure.

The next key concept is called “tangent
space,” which is a generalization of the
tangent plane of a 2D surface. Suppose that a
regular surface S is represented by r(u,v) =
{x(u, v), y(u, v), z(u, v)}, where (u,v) € R?
and (x,y,2) € R3. Thus as a main part of the
functional increment, the differential

dr(u, v) = r,(u, v)du + ry(u, v)dv
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gives a tangent vector with (du, dv) as coor-
dinates under the basis {r,,r,} (generally not
orthonormal). This vector space formed by basis
{r,, ry} is called a tangent space of surface S at
point p, denoted by 7, S.

Definition3 Let p be a point in an d-
dimensional differentiable manifold M, and
attach at p a copy of R tangential to M. The
resulting structure is called the tangent space of
M at p, denoted by T, M. If y is a smooth curve
passing through p, then the derivative of y at
p (also known as the velocity of the curve) is a
tangent vector in 7, M.

See Fig. 1 for an illustrative example. Other
definitions of the tangent space are possible. For
example, a tangent vector at p may be defined as
directional derivatives X of smooth functions on
M that satisfies the Leibniz rule

X(f-9p)=X(f(p)Hglp)+ f(p)X(g(p)),

which does not involve local coordinates.

Definition 4 Let M be a differentiable manifold
of dimension d and p € M. A Riemannian metric
on M is a family of (positive definite) inner
products g,: T,M x T,M + R such that for
all differentiable vector fields X, Y on M, p +—
gp(X(p), Y(p)) defines a smooth function M +>
R. In other words, a Riemannian metric g is a
symmetric (0,2)-tensor that is positive definite
(i.e., g(X, X) > O for all tangent vectors X #*
0). A Riemannian manifold is a differentiable
manifold equipped with a Riemannian metric.
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Riemannian Manifold, Fig. 1 The tangent space
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The inner product of two tangent vector
X,Y € T,M with coordinate representations
! = j_9 i
X=%,X"5 ‘,Y_ZjY 5,7 thenis

(X,Y) = gp(X.¥) = gij(P)X'Y/.

In particular (%, %) = g;j. Formally, the

metric tensor can be written in terms of the dual
basis {dxl, ., dxd} of the cotangent space as

g:Zgijdxi(@dxj.
ij

For a smooth parametrized curve y : [a, b]
M, its length is defined as

b
L(y )_/
d
/ f —y(t) —(z) dt
dy dxi dy dxJ
-[ (T g )
a axi dt’ axi dt
/b dy 3y \ dxi dxJ
a ax! dxJ ) dt dt

N
Z/ah

dxt dxl
th j V(t ) t,
which is exactly the original starting point of
Riemann.
Similarly, a volume element can be expressed

by
dV = /det(gij)dx" A--- A dx",

where det(g;;) is the determinant of the matrix
representation of the metric tensor and {dx'}
is the dual coframe. Hence the volume of an
oriented manifold M is defined to be

dV:/ det(gi)dx" A+ A dx"
Jy v = [, e

dy
—(t)

\i



Riemannian Manifold

The following theorem provides a guarantee
of the existence of the Riemannian metric.

Theorem 1 Each differentiable manifold may be
equipped with a Riemannian metric.

One can read [4] for more details on Rieman-
nian geometry and [3] for connections to geomet-
ric analysis. For those not familiar with differen-
tial geometry of curves and surfaces, please refer
to [5] (without tensor analysis).

Application

Riemannian normal coordinates, introduced by
Riemann in his inaugural lecture in 1854, have
been used to manifold learning. Local coordinate
charts can be constructed to embed data points
from a high-dimensional ambient space into a
low-dimensional feature space [6].

Riemannian manifolds have found successful
applications for video representations in visual
classification tasks, since a discriminant Rieman-
nian metric can encode the nonlinear geometry
of the underlying Riemannian manifolds. In [7]
a metric learning framework was presented to
learn a distance metric across a Euclidean space
and a Riemannian manifold to fuse the average
appearance and pattern variation of faces within
one video.

Visual data often forms a special manifold
structure lying on a lower dimensional space. An
efficient clustering method on Riemannian mani-
folds was proposed in [8], and experiments over
several image and video datasets demonstrated
the favorable computational complexity of the
proposed clustering algorithm.

In video analysis and more generally activity
recognition, temporal evolutions of features can
be viewed as trajectories on Riemannian mani-
folds. A transported square-root vector field [9]
on Riemannian manifolds was used to model
these trajectories, which successfully applied to
visual speech recognition.

Grassmann manifold, as a special case of gen-
eral Riemannian manifolds, has attracted much

interests in the community of computer vision. A
robust estimation approach based on Grassmann
manifolds [10] was employed for chromatic noise
filtering, fundamental matrix estimation, planar
homography, and affine motion factorization.

The monograph [11] presents a comprehen-
sive treatise on Riemannian geometric compu-
tations and related statistical inferences in sev-
eral computer vision problems, including face
recognition, activity recognition, object detec-
tion, biomedical image analysis, and structure
from motion.

Recently, Riemannian geometry has been
applied to the study of deep neural networks [12].
They found that neural networks are learning
systems of differential equations governing the
coordinate transformations that represent the
data manifold. Also a closed form solution of the
metric tensor on the underlying data manifold
can be found by back-propagating the coordinate
representations learned by neural networks.
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