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ABSTRACT
It is well known that using proper weights for genetic variants is crucial in enhanc-

ing the power of gene- or pathway-based association tests. To increase the power, we

propose a general approach that adaptively selects weights among a class of weight

families and apply it to the popular sequencing kernel association test. Through com-

prehensive simulation studies, we demonstrate that the proposed method can sub-

stantially increase power under some conditions. Applications to real data are also

presented. This general approach can be extended to all current set-based rare variant

association tests whose performances depend on variant's weight assignment.
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1 INTRODUCTION

Genome-wide association studies (GWASs) have success-

fully identified numerous genetic variants that are signifi-

cantly associated with many common diseases (Manolio et al.,

2009). However, these known variants explain only a small

portion of disease heritability. Many genetic variants, espe-

cially those with small effect sizes, remain to be identified

(Manolio et al., 2009). In order to increase power of genetic

association test, one approach is to conduct gene-based tests,

where genotyped single nucleotide polymorphisms (SNPs)

within a gene are used simultaneously.

Many statistical methods for GWASs have been developed

in the literature (Chen, 2011b, 2013, 2014, 2017; Chen & Ng,

2012; Chen & Wang, 2017; Chen et al., 2014; Chen, Huang,

& Ng, 2014; Chen, Huang, & Ng, 2016; Chen, Lin, & Wang,

2017; Chen, Ng, Li, Liu, & Huang, 2017; Wang, 2012; Zang

& Fung, 2011; Zheng & Ng, 2008). Other methods designed

specifically for rare variant association test were also pro-

posed. For instance, the burden test (Li & Leal, 2008) com-

bines multiple variables (e.g., loci) as a single one on which

an association test will be performed. The burden test per-

forms well if all SNPs have the same effect direction and sim-

ilar effect sizes. However, if causal SNPs within a gene have

different effect directions, the burden test may have little or

low power. If the effect sizes are not similar, one may make

them similar by assigning appropriate weights to SNPs. When

causal SNPs have different directions, methods more robust

than the burden test should be considered. Many such methods

have been developed, for instance, C-alpha test (Neale et al.,

2011), sequencing kernel association test (SKAT) (Wu et al.,

2011), optimal SKAT (SKAT-O) (Lee, Wu, & Lin, 2012), and

variations of SKAT (Chen, Han, & Wang, 2017; Sun, Zheng,

& Hsu, 2013; Wang, 2016; Wu, Pankow, & Guan, 2015). In

addition, some adaptive tests based on multivariate analysis

were also proposed in the literature (Han & Pan, 2010; Pan,

Kim, Zhang, Shen, & Wei, 2014).

SKAT is one of the most popular tests in this area.

SKAT assigns weights to SNPs based on their minor allele

frequencies (MAFs). Typically, the weight 𝑤 is set as a

function of MAF. The weighing function in SKAT is 𝑤 =
𝑑𝑏𝑒𝑡𝑎(𝑀𝐴𝐹, 𝑎, 𝑏), where 𝑑𝑏𝑒𝑡𝑎(⋅, 𝑎, 𝑏) is the probability
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density function of a beta distribution with two shape param-

eters a and b. The authors of SKAT suggested to use 1 and 25

as the default values for a and b, respectively, and applied it to

the Dallas heart study (DHS) data (Romeo et al., 2009). Based

on our own experience with the DHS data, using other values

of a and b than their default values results in lowered power.

That is, these default values for a and b seem to be chosen for

optimizing the power performance of SKAT on the DHS data.

Other weighting functions have also been introduced in the

literature. For instance, for resequencing data, Madsen and

Browning suggested to use the weight as the inverse of 𝑤̂ =√
𝑛𝑞(1 − 𝑞), where 𝑞 = 𝑚𝑈+1

2𝑛𝑈+2 , n is the sample size, 𝑚𝑈 is the

number of mutant alleles observed in the unaffected individu-

als, 𝑛𝑈 is the number of unaffected individuals for each vari-

ant (Madsen & Browning, 2009). In other words, the above

weight is the estimated standard deviation of the total num-

ber of mutations in the sample under the null hypothesis of no

frequency differences between affected and unaffected indi-

viduals.

In this study, we show that SKAT is sensitive to the weight

assignment. We propose an approach to improve its detecting

power through searching for the optimal weights. The orga-

nization of the paper is as follows. In Section 2, we present

the new approach. In Section 3, a comprehensive simulation

study is conducted to demonstrate the improvements of the

proposed test. Real data applications are performed in Sec-

tion 4. In Section 5 we give some discussions and conclude

this study.

2 METHOD

2.1 Notations and SKAT
In an association study, the phenotype can be binary (e.g.,

case-control study) or quantitative. In general, a generalized

linear model can be used to adjust for some covariates. In this

paper, without loss of generality, we use 𝑦 = (𝑦1, 𝑦2,⋯ , 𝑦𝑛)𝑇
to denote the phenotypes after adjusting for some covari-

ate and being standardized (e.g., each component divided by

its estimated standard deviation), where the superscript 𝑇

denotes the transpose operation, and 𝑛 the number of sub-

jects included in the study. We use 𝑚 to denote the number of

SNPs in a set (e.g., gene) from which an association test will

be performed. We use an 𝑛 × 𝑚 matrix 𝐺, 𝐺 = (𝑔𝑖𝑗), to denote

the genotype data with its (𝑖,𝑗)th component, 𝑔𝑖𝑗 , equals the

number of minor allele of SNP 𝑗 from subject 𝑖. Therefore,

𝑔𝑖𝑗 = 0, 1 or 2(𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2,… , 𝑚).
The SKAT test statistic can be written as:

𝑆𝐾𝐴𝑇 = 𝑦𝑇𝐺𝑊𝑊𝐺𝑇 𝑦, (1)

where 𝑊 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2,⋯ , 𝑤𝑚), 𝑤𝑖 > 0 is the weight

assigned to the ith variant.

Let 𝐺𝑊 = 𝐺𝑊 , and the kth eigenvalue and its associ-

ated eigenvector of 𝐺𝑇
𝑊
𝐺𝑊 be 𝜆𝑊 ,𝑘 and 𝜇𝑊 ,𝑘, respectively.

Without loss of generality, suppose 𝜆𝑊 ,1 ≥ 𝜆𝑊 ,2 ≥ ⋯ ≥

𝜆𝑊 ,𝑚 > 0. Then, 𝐺𝑇
𝑊
𝐺𝑊 𝜇𝑊 ,𝑘 = 𝜆𝑊 ,𝑘𝜇𝑊 ,𝑘, 𝜇𝑇

𝑊 ,𝑘
𝜇𝑊 ,𝑘 = 1,

𝑘 = 1, 2,… , 𝑚.

Let 𝑣𝑊 ,𝑘 = 𝐺𝑊 𝜇𝑊 ,𝑘∕
√
𝜆𝑊 ,𝑘. It is easy to verify that

𝐺𝑊 𝐺𝑇
𝑊
𝑣𝑊 ,𝑘 = 𝜆𝑊 ,𝑘𝑣𝑊 ,𝑘, 𝑣𝑇

𝑊 ,𝑘
𝑣𝑊 ,𝑘 = 1, 𝑘 = 1, 2,⋯ , 𝑚.

That is, {𝑣𝑊 ,𝑘, 𝑘 = 1, 2,… , 𝑚} are the eigenvectors of

𝐺𝑊 𝐺𝑇
𝑊

with 𝜆𝑊 ,𝑘
′𝑠 the corresponding eigenvalues. Because

for conformable matrices AB and BA, they have the same

set of none-zero eigenvalues, {𝜆𝑊 ,𝑘} are also the set of non-

zero eigenvalues of 𝐺𝑊 𝐺𝑇
𝑊
. Therefore, SKAT statistic can be

rewritten as:

𝑆𝐾𝐴𝑇 = 𝑦𝑇𝐺𝑊𝑊𝐺𝑇 𝑦 =
∑𝑚

𝑘=1
𝜆𝑊 ,𝑘

(
𝑦𝑇 𝑣𝑊 ,𝑘

)2
. (2)

It can be shown that under the null hypothesis, the above

statistic in (2) asymptotically follows a linear combination of

chi-square distributions (Chen, Han et al., 2017),

𝑆𝐾𝐴𝑇 ∼
∑𝑚

𝑘=1
𝜆𝑊 ,𝑘𝜒

2
𝑘,1, (3)

where 𝜒2
𝑘,1 is independently and identically distributed chi-

square distribution with degree of freedom (df) 1. Therefore,

the P-value for SKAT can be estimated by the Davis’ approach

or other methods (Davies, 1980; Wu, Guan, & Pankow, 2016).

From (3), we know that the performance of SKAT depends on

the weight matrix 𝑊 .

The burden test statistic can be written as:

𝐵 = 𝑦𝑇𝐺𝑊 𝟏𝟏𝑇𝑊 𝐺𝑇 𝑦, (4)

where 1 is the 𝑚 × 1 vector with all elements equal to 1.

For any 0 ≤ 𝜌 ≤ 1,we can define a new statistic which is a

linear combination of the burden and SKAT statistics:

𝑆𝜌 = 𝜌𝐵 + (1 − 𝜌)𝑆𝐾𝐴𝑇 . (5)

It should be pointed out that under the null hypothesis, the

two test statistics, S and B, in (5) are correlated (Lee et al.,

2012). In general they are not asymptotically independent

either.

The SKAT-O test statistic (Lee et al., 2012) is defined as:

𝑆𝑜 = min
0≤𝜌≤1

𝑝𝜌, (6)

where 𝑝𝜌 is the P-value from the test 𝑆𝜌 in (5). Its practical

version is:

𝑆𝑜 = min
{
𝑝𝜌1 , 𝑝𝜌2 ,… , 𝑝𝜌𝑏

}
. (7)

The distribution of𝑆𝑜 is usually unknown, numerical meth-

ods are used to estimate its P-value.



CHEN ET AL. 3

F I G U R E 1 Contour plot of −log10(P values) from the Dallas

heart study data by SKAT with different a and b values in the weight-

ing function, 𝑤𝑖 = 𝑑𝑏𝑒𝑡𝑎(𝑀𝐴𝐹𝑖, 𝑎, 𝑏)
Note: The default values for a and b are (1, 25) in SKAT.

To investigate the influence of the weights, we apply SKAT

with different a and b values to the DHS data. Figure 1 is the

contour plot of –log10(P-value) from this data set by SKAT

with different a and b values in the weighting function. It

clearly shows that for this specific data set, a = 1 and b = 25

are nearly the optimal values, in terms of obtaining the small-

est P-value, for SKAT using 𝑑𝑏𝑒𝑡𝑎(𝑀𝐴𝐹𝑖, 𝑎, 𝑏) as the weight-

ing function. However, it should be pointed out that, first, the

parameters in the weighting function should be determined

before we see the data, otherwise, we need consider the mul-

tiple comparison issue as many values of a and b have been

tested in finding the optimal values. Second, those default val-

ues in SKAT were obtained only based on one single data

set; different data may have very different optimal weights.

Therefore, the SKAT can be improved by searching for

optimal weights.

More generally, for an association test, we want to test the

null hypothesis, H0, that all of the SNPs are independent of the

phenotype versus the alternative hypothesis, H1, that at least

one of the SNPs is associated. Let 𝑓 ∶ 𝑅𝑚 → 𝑅𝑘 be a real-

valued function such that 𝑓 (𝐺𝑖) = 𝐻𝑖, where 𝐺𝑖 is the geno-

type data from the ith subject, that is, the ith row of matrix

𝐺, and 𝐻𝑖 = (ℎ𝑖1, ℎ𝑖2,⋯ , ℎ𝑖𝑘), the aforementioned associa-

tion test can be conducted based on the newly defined “geno-

type”𝐻.Each of the current association tests can be viewed as

a special case of this more general test with a specific function

𝑓 . For instance, for SKAT, 𝑓 (𝐺𝑖) = 𝐺𝑖𝑊 ; and for the burden

test, 𝑓 (𝐺𝑖) = 1𝑇𝐺𝑖, where 1 is a vector with all elements equal

to 1. For an appropriately chosen function 𝑓 , the association

test based on 𝐻 can potentially increase the detecting power

(Fan et al., 2015).

2.2 Proposed method
In this paper, we will focus on SKAT test with the weight-

ing function, 𝑤𝑖 = 𝑑𝑏𝑒𝑡𝑎(𝑀𝐴𝐹𝑖, 1, 𝑏); we will search for the

optimal value b to improve the detecting power. For a given

set of possible values, B, for b, the test statistic of the proposed

method is defined as:

𝑆 = min
𝑏∈𝐵

𝑝𝑏, (8)

where 𝑝𝑏 is the P-value from SKAT with weighting function,

𝑤𝑖 = 𝑑𝑏𝑒𝑡𝑎(𝑀𝐴𝐹𝑖, 1, 𝑏).
There is no simple expression for the null distribution of

the above test statistic S. Its P-value can be estimated based

on permutation. Specifically, we permute the phenotype data

T times, for each permutation, 1 ≤ 𝑡 ≤ 𝑇 , we calculate the

statistic 𝑠𝑡 using (8). The P-value will be estimated as:

𝑝̂ =
∑𝑇

𝑡=1 𝐼𝑠𝑡<𝑠

𝑇
, (9)

where 𝐼 is the indicator function.

One limitation of the permutation-based tests, such as the

above one, is the computational burden, especially when there

are hundreds of thousands of genes and very small signifi-

cance level is used. We develop a fast algorithm for the permu-

tation, which will dramatically reduce the computation bur-

den. This algorithm will reduce the precision of the estimate

when the true P-value is large. We first define the following

parameters:

𝑝0= constant × significance level (e.g., 10 ×10−6);

𝑇𝑚𝑎𝑥 = maximal number of permutations (e.g., 106);

𝑇0 = minimal number of permutations (e.g., 10);

𝑀 = multiplying increment for the number of permutation

(e.g., 10).

The fast algorithm works as follows:

Step 0. Calculate the test statistic s using (8) for a given set

𝐵;
Step 1. Set initial values: 𝑝0 = 10−5, 𝑇𝑚𝑎𝑥 = 106, 𝑇0 = 10,

𝑀 = 10, 𝑇 = 𝑇0;

Step 2. Use (8) and (9) to estimate the P-value, 𝑝̂. Set 𝑇 ←
𝑇 ×𝑀 ; and

Step 3. If 𝑝̂ > 𝑝0 or 𝑇 > 𝑇𝑚𝑎𝑥, report 𝑝̂ and stop; otherwise go

to Step 2.

In the above algorithm, 𝑇0 can be assigned a larger number,

for example, 100, to increase the precision of the P values for

those nonsignificant genes, if the estimated P values will be

used in a follow-up analysis, for instance, gene ranking based

on their P values.
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3 SIMULATION STUDY

3.1 Simulation settings
To evaluate the performance of the proposed test, in this sec-

tion, we conduct a simulation study to compare it with some

existing methods. In the simulation study, we mainly focus

on comparing the proposed test (new) with the SKAT, the

SKAT-O, and the burden test. For the proposed test, we use

𝐵 = (1, 6, 11, 16,… , 46); for other tests, we use the default

weights as in SKAT, that is, 𝑤𝑖 = 𝑑𝑏𝑒𝑡𝑎(𝑀𝐴𝐹𝑖, 1, 25).
We use the program, simRareSNP (https://www.biostat.

umn.edu/~weip/), provided by Dr. Wei Pan to generate case-

control rare-variant SNP data. For the genotype data, we use a

latent multivariate Gaussian variable with a compound sym-

metry (CS) covariance structure. The correlation coefficient

(𝜌) in the CS takes different values, ranging from −0.8 to 0.8,

in the simulation study. We simulate SNPs with MAFs rang-

ing from 0.001 to 0.05.

To investigate how the new method controls type I error

rate, we simulate 10 null SNPs, 1,000 cases, and 1,000 con-

trols. Using significance level 0.05, we obtain the empiri-

cal type I error rate based on 1,000 replicates. To estimate

the power value, we randomly select a proportion (𝜃) of 10

variants as causal SNPs, where 𝜃 takes values 0.2, 0.4, 0.6,

0.8, and 1.0. Following the simulation settings as described

in the SKAT paper (Wu et al., 2011), we assume the effect

size of each causal SNP is a function of its MAF. Specifi-

cally, we assume the magnitude of logarithmic relative risk

(RR) of heterozygous to homozygous major genotypes is 𝑑 ×
log10(𝑀𝐴𝐹 ), with various values for 𝑑, −0.3, −0.2, and −
0.15. The logarithmic RR is very close to the logarithmic odds

ratio (OR), which was used with similar magnitudes for simu-

lation study in the SKAT paper (Wu et al., 2011), if the disease

prevalence is low. Of those causal SNPs, we randomly assign

20%, 50%, and 80% as protective variants. The commonly

used log-additive genetic model is assumed in the simulation.

The genotype frequencies of cases can be determined by those

of controls and the relative risks of heterozygous and homozy-

gous minor to homozygous major (Chen, 2014; Chen & Ng,

2012; Chen, Huang et al., 2014; Chen, Huang et al., 2016;

Chen, Huang, & Ng, 2012a). Specifically, if the genotype fre-

quencies of homozygous minor, heterozygous, and homozy-

gous major are p0, p1, and p2 (q0, q1, and q2), respectively,

for controls (cases), and the relative risks of heterozygous and

homozygous minor to homozygous major are r1 and r2, then

we have the following relationships:

⎧⎪⎪⎨⎪⎪⎩

𝑞0 =
𝑝0

𝑝0+𝑟1𝑝1+𝑟2𝑝2

𝑞1 =
𝑟1𝑝1

𝑝0+𝑟1𝑝1+𝑟2𝑝2

𝑞2 =
𝑟2𝑝2

𝑝0+𝑟1𝑝1+𝑟2𝑝2

T A B L E 1 Empirical type I error rate for each method using signif-

icance levels 𝛼 = 0.05 and 1,000 replicates when there are 1,000 cases,

1,000 controls, and 10 SNPs

𝝆 SKAT SKAT-O Burden New
0 0.059 0.053 0.052 0.062

0.2 0.044 0.055 0.067 0.063

0.4 0.041 0.050 0.049 0.062

0.6 0.055 0.050 0.053 0.064

0.8 0.045 0.040 0.044 0.055

−0.2 0.046 0.036 0.035 0.050

−0.4 0.039 0.049 0.054 0.052

−0.6 0.058 0.055 0.051 0.054

−0.8 0.050 0.055 0.054 0.063

T A B L E 2 Empirical power of each method using significance lev-

els 𝛼 = 0.05 and 1,000 replicates when there are 1,000 cases, 1,000

controls, and 10 SNPs with 20% of those 10𝜃 causal SNPs are protective

𝝆 (𝜽,−𝒅) SKAT SKAT-O Burden New
0 (0.2,0.3) 0.46 0.44 0.20 0.73

(0.4,0.2) 0.38 0.30 0.21 0.62

(0.6,0.15) 0.33 0.43 0.36 0.48

(0.8,0.15) 0.45 0.51 0.43 0.58

(1.0,0.15) 0.57 0.70 0.58 0.71

0.2 (0.2,0.3) 0.40 0.34 0.09 0.67

(0.4,0.2) 0.46 0.40 0.24 0.63

(0.6,0.15) 0.27 0.34 0.32 0.39

(0.8,0.15) 0.56 0.59 0.45 0.66

(1.0,0.15) 0.56 0.66 0.53 0.78

−0.2 (0.2,0.3) 0.44 0.42 0.19 0.72

(0.4,0.2) 0.35 0.38 0.29 0.60

(0.6,0.15) 0.35 0.37 0.26 0.48

(0.8,0.15) 0.50 0.57 0.41 0.71

(1.0,0.15) 0.55 0.64 0.55 0.82

3.2 Simulation results
Table 1 reports the empirical type I error rates for all methods

included in the comparison. It shows that under various condi-

tions, all method controlled type I error rate well. Tables 2–5

present the empirical power values (the highest power value is

highlighted for each comparison) from each test when 1,000

cases and 1,000 controls were simulated, with the propor-

tion of protective causal variants being 20%, 50%, 80%, and

100%, respectively. From the simulation results, we have the

following observations. First, as expected, the burden test is

less powerful than others in most situations; it has comparable

detecting power as SKAT and SKAT-O only when 𝜃 is large

(e.g., 𝜃 = 1) and most of the effects have the same direction

(e.g., in Tables 2 and 4). Second, when the burden test has rea-

sonable power, SKAT-O is more powerful than SKAT; other-

wise, SKAT performs better than SKAT-O. Third, for many of

https://www.biostat.umn.edu/~weip/
https://www.biostat.umn.edu/~weip/
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T A B L E 3 Empirical power of each method using significance lev-

els 𝛼 = 0.05 and 1,000 replicates when there are 1,000 cases, 1,000

controls, and 10 SNPs with 50% of those 10𝜃 causal SNPs are protective

𝝆 (𝜽,−𝒅) SKAT SKAT-O Burden New
0 (0.2,0.3) 0.50 0.44 0.18 0.71

(0.4,0.2) 0.50 0.40 0.16 0.59

(0.6,0.15) 0.25 0.17 0.12 0.38

(0.8,0.15) 0.41 0.35 0.13 0.51

(1.0,0.15) 0.61 0.50 0.20 0.70

0.2 (0.2,0.3) 0.49 0.43 0.14 0.74

(0.4,0.2) 0.34 0.29 0.08 0.45

(0.6,0.15) 0.36 0.27 0.10 0.46

(0.8,0.15) 0.48 0.40 0.12 0.59

(1.0,0.15) 0.48 0.45 0.19 0.69

−0.2 (0.2,0.3) 0.46 0.42 0.22 0.77

(0.4,0.2) 0.41 0.39 0.17 0.61

(0.6,0.15) 0.30 0.23 0.13 0.47

(0.8,0.15) 0.48 0.41 0.14 0.68

(1.0,0.15) 0.50 0.51 0.25 0.81

T A B L E 4 Empirical power of each method using significance lev-

els 𝛼 = 0.05 and 1,000 replicates when there are 1,000 cases, 1,000

controls, and 10 SNPs with 80% of those 10𝜃 causal SNPs are protective

𝝆 (𝜽,−𝒅) SKAT SKAT-O Burden New
0 (0.2,0.3) 0.46 0.40 0.22 0.65

(0.4,0.2) 0.34 0.36 0.29 0.50

(0.6,0.15) 0.31 0.35 0.22 0.33

(0.8,0.15) 0.38 0.50 0.46 0.56

(1.0,0.15) 0.62 0.73 0.59 0.68

0.2 (0.2,0.3) 0.47 0.39 0.26 0.61

(0.4,0.2) 0.39 0.37 0.20 0.55

(0.6,0.15) 0.26 0.30 0.28 0.36

(0.8,0.15) 0.36 0.39 0.30 0.49

(1.0,0.15) 0.50 0.61 0.54 0.61

−0.2 (0.2,0.3) 0.40 0.39 0.22 0.63

(0.4,0.2) 0.45 0.43 0.30 0.53

(0.6,0.15) 0.24 0.39 0.32 0.36

(0.8,0.15) 0.38 0.52 0.45 0.56

(1.0,0.15) 0.61 0.76 0.66 0.76

the situations considered in the simulation study, the proposed

test has the highest power values. Forth, the proposed test per-

forms comparable to or better than SKAT-O under many situ-

ations. Finally, for all situations considered, the proposed test

is more powerful than the original SKAT. This indicates that

the new test, like SKAT-O, is more robust than SKAT.

T A B L E 5 Empirical power of each method using significance lev-

els 𝛼 = 0.05 and 1,000 replicates when there are 1,000 cases, 1,000

controls, and 10 SNPs with 100% of those 10𝜃 causal SNPs are protec-

tive

𝝆 (𝜽,−𝒅) SKAT SKAT-O Burden New
0 (0.2,0.3) 0.57 0.51 0.28 0.82

(0.4,0.2) 0.40 0.48 0.48 0.63

(0.6,0.15) 0.28 0.49 0.54 0.45

(0.8,0.15) 0.37 0.80 0.83 0.58

(1.0,0.15) 0.57 0.96 0.98 0.81

0.2 (0.2,0.3) 0.53 0.50 0.34 0.79

(0.4,0.2) 0.44 0.53 0.49 0.66

(0.6,0.15) 0.31 0.41 0.47 0.44

(0.8,0.15) 0.38 0.71 0.84 0.60

(1.0,0.15) 0.54 0.95 0.97 0.65

−0.2 (0.2,0.3) 0.42 0.42 0.31 0.78

(0.4,0.2) 0.37 0.52 0.55 0.65

(0.6,0.15) 0.25 0.52 0.61 0.51

(0.8,0.15) 0.42 0.79 0.85 0.62

(1.0,0.15) 0.50 0.94 0.96 0.77

3.3 GAW17 data
The Genetic Analysis Workshop 17 (GAW17) data set

(Almasy et al., 2011) uses the genotypes of a subset of genes

whose sequencing data are available in the 1000 Genomes

Project. It includes SNPs from gene ELAVL4 that influences

the simulated quantitative phenotype Q1, and gene VNN1

which is associated with the simulated quantitative pheno-

type Q2. Except for the genetic risk factors, both Q1 and

Q2 were also assumed to be associated with some covari-

ates, such as age, gender, and smoking status. For each gene,

a total of 200 simulated Q1 and Q2 values were included in

the GAW17 data set. To account for the effects of those non-

genetic factors, we use a linear regression model, then applied

our proposed test using the residual as the phenotype, along

with SKAT, SKAT-O, and the burden test, to the standardized

residuals from the regression. For the proposed test, we use

𝐵 = (1, 6, 11, 16, 21, 26, 31) with 105 permutations to esti-

mate its P-value.

Because the estimated P values from the new test are 0 for

some cases, a small number of 10−5 is added to all P values

before log transformation. Figures 2 and 3 plot the –log10(P
values + 10−5) with P values obtained by those methods from

genes ELAVL4, and VNN1, respectively. Those plots clearly

show that the proposed test produced smaller P values com-

pared to SKAT, SKAT-O, and the burden test, for most of the

cases. This indicates that the new test is more powerful than

its competitors. For some situations, the improvements of the

new method over others were substantial.



6 CHEN ET AL.

F I G U R E 2 Pair-wise comparison of the –log10(P-value + 10−5) obtained by the proposed test, SKAT, SKAT-O, and the burden test from gene

ELAVL4 in the GAW 17 study

4 REAL DATA APPLICATION

In this section, we apply the new method, along with some

existing ones, to the ocular hypertension treatment study

(OHTS) data (Gordon & Kass, 1999). OHTS is a National

Eye Institute sponsored multicenter, randomized clinical trial.

Its goal is to investigate the efficacy of medical treatment

in delaying or preventing the onset of primary open angle

glaucoma (POAG) in individuals with elevated intraocular

pressure. Two hundred forty-nine non-Hispanic black indi-

viduals between 40 and 80 years old with both genotype

and phenotype data available in this data set are used for

this application. Data for this genetic study is available at

Database of Genotypes and Phenotypes (dbGaP, Study Acces-

sion phs000240.v1.p1). There were 1,051,295 genotyped

SNPs. There HGNC gene symbols were obtained using the

R/Bioconductor package biomaRt (version 2.26.1). There are

30,562 autosomal genes.

In this application, we want to detect the association

between each gene and the outcome central corneal thick-

ness (CCT), which is used to assess POAG in this study.

After adjusting for covariates age and gender using a lin-

ear regression, the standardized residues from the regression

analysis are used for the association tests. For the proposed

test, we use the fast algorithm described in Section 2.2 with

𝐵 = (1, 6, 11, 16, 21, 26, 31), 𝑝0 = 3.0 × 10−4, 𝑇𝑚𝑎𝑥 = 106,

𝑇0 = 10, and 𝑀 = 10. Table 6 reports the P values obtained

by SKAT, SKAT-O, the burden test, and the proposed method

for genes whose smallest P values from the four tests are less

than 5.0 × 10−5. For all of the 11 listed genes, two have the

smallest P values from SKAT, another two from SKAT-O,

and the rest of them from the proposed test. Except for one

gene, the P values obtained by the new method in Table 6

are all less than 10−4, while SKAT, SKAT-O, and the burden

test obtained very large P values for some genes. It should

be pointed out that given the small sample size, the P val-

ues obtained by SKAT, SKAT-O, and the burden test may

not be reliable as they are estimated based on their respec-

tive asymptotic distributions. On the other hand, the P value

based on the permutation procedure from the proposed test is

more accurate. However, to confirm the true association, those

listed genes warrant further investigation.

We also use this real data set to compare the computational

speed for those methods. All of the tests were implemented in

R. Table 7 reports their running times when they were run in

a computer with 3.60 GHz Intel Core processors and 8 GB of

RAM memory. Both of the burden and SKAT required much

less computations. The computational burden for SKAT-O
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F I G U R E 3 Pair-wise comparison of the –log10(P-value + 10−5) obtained by the proposed test, SKAT, SKAT-O, and the burden test from gene

VNN1 in the GAW 17 study

T A B L E 6 Genes in the OHTS data with smallest P-value less than 5.0 × 10−5 from the four methods

Chr Gene SKAT SKAT-O Burden New
3 CASR 3.4 × 10−4 𝟑.𝟖 × 𝟏𝟎−𝟓 8.7 × 10−5 1.0 × 10−3

3 MTCO1P29 2.7 × 10−5 𝟐.𝟔 × 𝟏𝟎−𝟓 2.7 × 10−5 5.1 × 10−5

11 DCHS1 𝟐.𝟖 × 𝟏𝟎−𝟓 4.5 × 10−5 9.5 × 10−2 3.7 × 10−5

16 SYT17 𝟒.𝟗 × 𝟏𝟎−𝟓 5.5 × 10−5 2.6 × 10−3 7.7 × 10−5

17 SENP3 6.1 × 10−2 6.1 × 10−2 4.1 × 10−2 𝟒.𝟔 × 𝟏𝟎−𝟓

17 SENP3-EIF4A1 1.2 × 10−1 2.1 × 10−1 5.4 × 10−1 𝟐.𝟎 × 𝟏𝟎−𝟓

17 MIR6779 4.0 × 10−4 3.7 × 10−4 6.4 × 10−4 𝟐.𝟒 × 𝟏𝟎−𝟓

17 KCNH4 2.7 × 10−1 1.0 × 10−1 6.9 × 10−2 𝟑.𝟎 × 𝟏𝟎−𝟔

17 HCRT 7.8 × 10−2 6.6 × 10−2 6.6 × 10−2 𝟐.𝟎 × 𝟏𝟎−𝟔

17 GHDC 7.8 × 10−2 7.8 × 10−2 7.8 × 10−2 𝟐.𝟎 × 𝟏𝟎−𝟔

17 STAT5B 1.6 × 10−1 2.5 × 10−1 6.3 × 10−1 𝟐.𝟎 × 𝟏𝟎−𝟓

T A B L E 7 Computational time for each method based on the OHTS data

Method SKAT SKAT-O Burden
New, 103

perm
New, 106

perm (est.)
New, fast
algorithm

Time (hr) 0.47 3.62 0.45 115 481 days 78.2

was about 7–8 times of that for SKAT. For the proposed test,

it can only be applied when the number of permutations for

each gene was small. However, if the fast algorithm was used,

the proposed method can be completed in about 3 days.

5 DISCUSSION AND CONCLUSION

In this paper, we propose an improved version of a given

association test by adaptively searching for optimal weights.
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Using the popular test SKAT, we show how to improve its

power by finding the optimal b value in the weighting func-

tion, 𝑤𝑖 = 𝑑𝑏𝑒𝑡𝑎(𝑀𝐴𝐹𝑖, 1, 𝑏) from a set of preset values 𝐵.

This approach can be easily extended for other tests, such as

SKAT-O and the burden test. Furthermore, this strategy can

be extended to find an optimal function 𝑓 described in Sec-

tion 2.1. The optimal function can be searched from a set of

meaningful candidate functions. However, it is challenging to

preset those functions; more research is needed in this area.

Due to the fact that the distribution of the proposed test

in (8) is intractable, a permutation-based approach should be

used to estimate its P value. To reduce the computational

burden, we develop a fast algorithm that gives lower esti-

mation precisions to those genes with large P values. On

the other hand, there are some advantages associated with

the permutation-based approach. First, it is a distribution-free

method; it can be applied to any situation without assum-

ing a specific distribution of the test statistic. Second, its P
value estimation can be more reliable than other methods

based on the asymptotic properties of the test statistics; this

is especially true when the sample sizes are small. Our simu-

lation study and real data application reveal that the proposed

approach can potentially increase the detecting power. The

new approach provides alternative statistical tool in genetic

association studies.

There are some limitations associated with the proposed

test. First, only relatively simple weighting functions are con-

sidered. Second, compared to other methods, the computa-

tional burden for the proposed test can be high even if the

fast algorithm is used. Third, in this report, we propose the

optimally weighted SKAT test. From the simulation results,

we find that under some situations (e.g., the assumptions for

the burden test are valid) the proposed test may have lower

power than the burden test and SKAT-O. In other words, it

is less robust than SKAT-O. One possible remedy is to base

on SKAT-O, instead of SKAT, to find the optimal weight-

ing functions. However, this will increase the computational

burden. In the future, we will consider more gene-based

association tests and more weighting functions with robust

P value combination methods (Chen, 2011a; Chen, 2013;

Chen & Nadarajah, 2014; Chen et al., 2014; Chen, Huang, &

Qiu, 2016; Chen, Liu, & Nadarajah, 2012). We will compare

their performances through simulation studies and real data

applications.
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