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Real world data are commonly geometrically nonlinear and thus are not easy to be processed by the 

traditional linear methods. Many existing techniques for nonlinear dimensionality reduction need careful 

parameter tuning and cannot be applied to real data stably and consistently. In this article we propose 

an efficient data preprocessing algorithm, called Curve Straightening Transformation (CST), to flatten the 

nonlinear geometric structure of data. Then Principal Component Analysis (PCA) and other linear pro- 

jection methods are adequate to perform the dimensionality reduction task in most cases. In this aspect, 

the proposed CST algorithm can be regarded as a geometric preprocessing step tailored for PCA. The com- 

prehensive experiments on both artificial and real datasets demonstrate that the proposed preprocessing 

algorithm is able to simplify the nonlinear geometric structures, and the flattened data are suitable for 

further dimensionality reduction by linear methods such as PCA. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The processing of high-dimensional data has been a key issue

that can arise in almost every field. Aside from the general difficul-

ties lying in both low-dimensional and high-dimensional data, such

as noise [1] , missing values [2] , and inconsistency [3] , the complex-

ity of high-dimensional data mainly stems from two aspects. One

is the high dimensionality which may incur heavy computational

burdens. Another is the nonlinear geometric structure lying in the

high dimensional space, which may hinder the discovery of use-

ful rules to describe the patterns for later processing. These two

complexities often mix together and thus increase the difficulties

of developing efficient data analysis methods. 

Most currently available solutions are nonlinear dimensional-

ity reduction techniques, called manifold learning, to tackle these

two complexities as a whole. However, the performances of these

manifold learning methods are far from satisfactory. One explana-

tion is that these methods often rely on rather strong assumptions

in the input data. For instance, the Isomap [4] algorithm requires

that the data manifold is connected and convex. Other locality pre-

serving methods, including Maximum Variance Unfolding (MVU)

[5] , Locally Linear Embedding (LLE) [6] , Laplacian Eigenmaps (LE)

[7] , Local Tangent Space Alignment (LTSA) [8] , and Riemannian
∗ Corresponding author. 
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anifold Learning (RML) [9] , often impose strong requirements on

he density of the input data. Some experiments [10] have already

onfirmed the unstability of these algorithms. 

Another difficulty to use these nonlinear methods is parameter

uning. For example, in kernel based techniques like Kernel PCA

KPCA) [11] and Diffusion Maps (DM) [12] , the best kernel func-

ion usually depends on the data in hand and there lacks efficient

esearch to find the optimal kernels. On the other hand, the tech-

iques based on neural networks (such as Autoencoder [13] ) have

ots of parameters to be finely tuned; and the parameter tuning

ften requires a painstaking examination by human, and is usually

ime-consuming. 

To circumvent these difficulties, we propose a new idea from

he aspect of data preprocessing to decrease the data nonlinear-

ty by geometric transformations. Fig. 1 illustrates this preprocess-

ng idea on the Swiss Roll data. The nonlinear geometric structure

f the example dataset becomes simpler after the proposed geo-

etric transformation, as shown at Fig. 1 . In this way, one can

se the simple but efficient Principal Component Analysis (PCA)

14] for feature extraction in most cases, thus avoiding the selec-

ion of complicated manifold learning methods and excluding the

unning of parameters in the existing nonlinear methods. 

. The proposed algorithm 

We firstly introduce the basic principle of the proposed algo-

ithm to show how it works and why it is effective. Then, we give
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Fig. 1. The original (a) and preprocessed (b) Swiss roll data. 

Fig. 2. The conceptual examples for discrete region (a), bridge (b), shortest connected region (c) and connection path (d). 
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wo geometric facts that we apply to the implementation of our

lgorithm. And we present the detailed implementation at the last

ubsection. 

.1. Basic principle 

This paper aims at proposing a novel idea to simplify the ge-

metric structure of data into a much simpler and less nonlin-

ar structure. Followed by linear dimensionality reduction methods

ike PCA, the simplified structure can be used for clustering, clas-

ification, and other tasks. The preprocessing algorithm is named

s Curve Straightening Transformation (CST). To better describe the

ST, let us introduce four definitions as follows. The corresponding

xamples are shown in Fig. 2 . 

efinition 1 (Discrete region) . In a n dimensional Euclidean space,

 set X = 

⋃ c 
i =1 O i is called a discrete region if each O i ⊂ R 

n is a con-

ected subset and O i ∩ O j = ∅ (1 ≤ i, j ≤ c) . And each O i is called

 primitive subregion accordingly. 

efinition 2 (Bridge) . The bridge between two primitive subre-

ions O i and O j is the line segment AB (A ∈ O i , B ∈ O j ) which is

he shortest edge connecting two subregions. 

efinition 3 (Shortest connected region) . If a discrete region is

ully connected by c − 1 bridges and the sum of the lengths of

hese bridges reaches minimum, then it is called a shortest con-

ected region . 

efinition 4 (Connection path) . The shortest curve connecting two

oints in the shortest connected region is called a connection path .

nd its length is called the connection distance accordingly. 

As a connection path is the shortest path running through the

ata region between two given points, it serves as an outline to

epresent the geometric structure (curvedness or straightness) of

he underlying region. A short connection path reflects the geo-

etric structure of a local region, while a long connection path

rovides a signature of the principal geometric structure of the

lobal region. We call such a long connection path the principal

onnection path . 
With the aid of the above concepts, the proposed CST algo-

ithm is composed of following steps. (1) The nonlinear geometric

tructure of the input data is represented by a principal connection

ath (see Fig. 1 (a)). (2) The shortest connected region is mapped to

his curve. (3) Some geometric rules are designed to straighten the

urve. (4) The operation of straightening also drives the region to

nfold accordingly. (5) A new region with simpler geometric struc-

ure is finally constructed (see Fig. 1 (b)). 

.2. Prerequisite claims 

The computation procedure of the CST algorithm are based

n some geometric intuitions. Before describing the algorithmic

etails, two geometric conclusions are stated as follows. The

quations in these conclusions are used somewhere in the CST

lgorithm. 

• Let L : x = v E be an arbitrary line passing through the origin in

R 

n , where v is a real number and E is a unit n -dimensional

column vector. Then, the projection of point x 0 on L can be ex-

pressed by 

x ∗ = E E T x 0 (1) 

ere are some explanations. Suppose the projection of point x 0 on

 is x ∗ = v 0 E. The inner product of vector (x 0 − v 0 E) and E should

hen be 0, that is, E t (x 0 − v 0 E) = 0 . So it holds v 0 = E T x 0 . There-

ore, x ∗ = Ev 0 = EE T x 0 . 

• Let S : E t x = 0 be a (n − 1) -dimensional hyperplane embedded

in R 

n , where E is a unit n -dimensional column vector. Then, the

projection point of point x 0 on S can be expressed by 

x ∗ = x 0 − E E T x 0 (2)

Here are some explanations. The projection point x ∗ of point

 0 on S should satisfy: x 0 − x ∗ = βE ( β is a real number) and

 

T x ∗ = 0 . The former equation can be transformed into x ∗ = x 0 −
E. Multiply both sides by E T , and it gets E T x 0 = βE T E. Since E is

 unit vector, then β = E T x . Finally, it gets x ∗ = x − E E T x . 
0 0 0 
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Fig. 3. The schematic diagram of CST steps. Each subgraph corresponds to one step of CST successively. DS used in the figure is a 2-dimensional dataset that is unfolded 

along one direction. 
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2.3. Algorithm implementation 

The data of an application are always located on certain region.

And the region is invariably expressed via its sampled data points

that serve as the input to the CST algorithm. For a specific dataset,

a nearest neighbor graph can be built to represent the discrete

region, its connection components corresponding to the primi-

tive subregions. Naturally, the shortest line segment between the

points of two connection components is regarded as a bridge. This

way, the shortest connected region of that dataset is con-

structed. Then, the connection path between two data points

is approximated by the shortest path accessible on the con-

nected nearest neighbor graph (i.e., the shortest connected region).

Algorithm 1 presents the complete procedure of the CST approach.

Algorithm 1: The CST Algorithm. 

Input : D = { X 1 , X 2 , . . . , X n } : m × n dataset; 

K: the number of neighbours; 

U: the number of unfolding directions. 

Output : D 

′ : the unfolded m × n D . 

1 Initialize D 

′ = { X ′ 
1 
, X ′ 

2 
, . . . , X ′ n } = { X 1 , X 2 , . . . , X n } ; 

2 for u = 1 to U do 

3 Construct a K Nearest Neighbour (K-NN) graph G from D ; 

4 while G not connected do 

5 Link a connection component to its nearest one; 

6 end 

7 Choose a random point r and obtain a principal 

connection path via r, denoted as L g = [ g 1 , g 2 , . . . , g q ] ; 

8 Calculate the length of L g , denoted as c; 

9 Compute the connection distances to g 1 , g q , denoted as 

[ b 1 , b 2 , . . . , b n ] and [ a 1 , a 2 , . . . , a n ] ; 

10 Calculate the mapping values [ d 1 , d 2 , . . . , d n ] via the law 

of cosines, i.e., d i = ( b i 
2 + c 2 − a i 

2 ) / 2 c; 

11 Obtain the first principal component E of D via NIPALS; 

12 Move each point X ′ 
i 

∈ D 

′ by X ′ 
i 

= X ′ 
i 
+ (e i − s i ) (where 

e i = d i E and s i = E E T X i ); 

13 Project D to the hyperplane E T X = 0 ; 

14 end 

15 Return D 

′ ; 

And an illustrative diagram is shown in Fig. 3 for explaining these

steps. 

Here are some explanations on the procedure in more details.

The graph G constructed at Line 3 corresponds to the discrete re-

gion. The while loop at Line 4 tries to build a shortest connected

region based on the graph G . In Lines 7–9, we find the principal

connection path L g by running the Dijkstra [15] algorithm twice.

The first run is to find g 1 , the other end of the longest connec-

tion path starting from r . The second run is to obtain the principal

connection path L g and the distances [ b 1 , b 2 , . . . , b n ] . And finally,
e need to run the Dijkstra algorithm one more time to compute

 a 1 , a 2 , . . . , a n ] , respectively. 

Mapping values [ d 1 , d 2 , . . . , d n ] at Line 10 indicate the mapping

ocations of D on L g . The vector E calculated via NIPALS [16] at Line

1 is the direction on which the projection variance of D gets its

aximum. The geometric transformation of the dataset D 

′ at Line

2 is based on a line L s : x = v E along which the D 

′ is to be un-

olded. The s i = E E T X i ( Eq. (1) ) is the projection of X i ∈ D before

he transformation, and the e i = Ed i is the projection of X i after the

ransformation. That is why we give X ′ 
i 

such a movement. Line 13

rojects D to the hyperplane E T X = 0 by D = D − E (E T D ) ( Eq. (2) ),

esulting in a new D for the next iteration. 

Note that the nearest neighbor graph built in the CST algo-

ithm is only a common basic version, for this is not the focus

f the paper. Some researchers have been trying some strategies

o build more reasonable neighbor graphs [9,17] ). The calculation

f [ d 1 , d 2 , . . . , d n ] at Line 10 is the core part of the algorithm. We

mploy a variation of the Law of Cosine to construct the mapping

ecause the three points ( X i , g 1 and g q ) connected by connection

aths are regarded as a triangle in the curved space. In a triangle

onsisting of edges a, b , and c , it holds a 2 = b 2 + c 2 − 2 bc cos (α)

ccording to the Law of Cosines, where α is the included angle of b

nd c . Then, we have b cos (α) = (b 2 + c 2 − a 2 ) / 2 c. We take b cos ( α)

s the mapping value (i.e., d i in Algorithm 1 ) to build a new map-

ing pattern. And this is our new idea. 

As the algorithm shows, it selects U orthogonal directions for

nfolding, which also means the number of loops the algorithm

hould run. Theoretically, the larger the U , the better the prepro-

essing effect. However, the triangles in the graph that we apply

he Cosine theorem to are not strict Euclidean triangles. The loops

ay accumulate some errors at each loop. If U is too large, the

nfolding effect at the latter loops may be weak. According to our

reliminary tests, U had better be less than 5. considering both the

omputation burden and unfolding effect, the values 1–3 are good

hoice for most data. As far as K is concerned, it is actually the

arameter K of the K-NN algorithm for constructing a K -nearest

eighbour graph. There is no particular knowledge for selecting K .

ommon range of K is about 8–12 based on the common cogni-

ion, and 1–2 for some special purposes. For many cases, there is

o big difference with varied K between 8 and 12. 

. Algorithm analysis 

.1. Algorithm complexity 

In this subsection, we provide an analysis of the computational

omplexity of each step as a function of the number of samples n ,

he input dimension m , the number of unfolding directions U , and

he other related factors if necessary. 

The first step is to construct the neighbor graph G . For a given

oint x , computing the distances needs O ( mn ) calculation, and
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orting to get its K-NNs takes O ( Kn ). Thus, for all n points, finding

-NNs is O (n 2 (m + K)) . To insure a connected G , what follows is to

heck the connectivity of G , which requires O ( Kn ). If G is not con-

ected, calculating the distances between the points of two con-

ected components (let the numbers of elements in the two sets

e n 1 and n 2 ) is O ( n 1 n 2 m ) and finding the two nearest points takes

 ( n 1 n 2 ). 

The next step is to find the principal connection path L g =
 g 1 , g 2 , . . . , g q ] . On the neighbor graph G , it spends O ( n 2 ) to find

he endpoint g 1 by searching from a randomly selected point x r via

he Dijkstra algorithm. In the same way, using the Dijkstra to find

 g = [ g 1 , g 2 , . . . , g q ] and all the connection paths starting from g 1 
eeds same computation. Again, finding all the connection paths

tarting from g q via the Dijkstra algorithm costs equal computa-

ion. With the computational results of the previous steps, the

hird step is very simple. The complexity of calculating the map-

ing positions of all data points on L g is O ( n ). 

The major task in transforming L g into unfolding line L s is to

nd the unfolding direction E , which is done via NIPALS algorithm.

s we know, each iteration of NIPALS needs O ( mn ) and the max-

mum number of iterations is a constant. Therefore, its complex-

ty is still O ( mn ). Besides, marking the transferred mapping point

 i = Ed i on L s for each X i ∈ D requires also O ( mn ) calculation. Dur-

ng the course of transforming D 

′ by L s , projecting each point X i ∈ D

o L s and gaining its projection point s i takes O ( mn ). And then

oving each point X ′ 
i 

∈ D 

′ by X ′ 
i 

= X ′ 
i 
+ (e i − s i ) requires also same

alculation. Lastly, if required, projecting D to the hyperplane de-

ned by E spends still O ( mn ). 

In summary, the computation of unfolding data along one di-

ection is O (n 2 (m + K)) . Considering the number of unfolding di-

ections U , the final computational complexity of CST should be

 (Un 2 (m + K)) . 

.2. Algorithm properties 

To further investigate the properties of the proposed algorithm,

e have the following results. 

LAIM 1. Suppose that the mapping positions of two data points

 1 , P 2 on L g are indicated by d 1 and d 2 . Then it holds 

lim 

 2 → P 1 
(d 2 ) = d 1 . 

roof. Let b 1 , a 1 and b 2 , a 2 be the connection distances between

wo nearby data points P 1 , P 2 and the two endpoints g 1 , g q of the

rincipal connection path L g . Since P 1 , P 2 stay close, it is reason-

ble to approximate their connection distance by the Euclidean

istance (denoted as s ). We may assume b 2 = b 1 + b e . It can be

erified based on the definition of connection distance that b 2 <

 1 + s and b 1 < b 2 + s . Then it follows that b 1 + b e < b 1 + s and

 1 < b 1 + b e + s . So, it holds that b e < s and −s < b e , that is, | b e | < s .

ence 

im 

s → 0 
(b e ) = 0 

herefore, it holds that 

im 

s → 0 
(b 2 ) = b 1 

imilarly, it is true that 

im 

s → 0 
(a 2 ) = a 1 

s 

lim 

 2 → b 1 
 2 → a 1 

(d 2 ) = lim 

b 2 → b 1 
a 2 → a 1 

b 2 2 + c 2 − a 2 2 

2 c 
= 

b 2 1 + c 2 − a 2 1 

2 c 
= d 1 
e get that 

im 

s → 0 
(d 2 ) = d 1 ⇒ lim 

P 2 → P 1 
(d 2 ) = d 1 . �

�

Clearly the claim implies that two points nearby will stay still

earby after unfolding, because their moving displacements along

nfolding direction are quite close. Therefore, the CST algorithm is

ble to preserve the locality relations in the dataset. Namely, the

ST is a locality preserving technique . Moreover, two far points are

ure to keep far if their mapping points are far on L g . Consequently,

he CST has the globality preserving property to a certain degree . 

Naturally, the geometric transformations in the CST are depen-

ent on the selected principal connection path, but they will make

o obvious difference if the selected curve is long enough to reflect

he geometric structure of the dataset. For a point (denoted as B ) in

he nearest neighbor graph, if there exists another point (denoted

s A ) such that the shortest path starting from point A to point B

s not contained in any other shortest paths starting from point A ,

hen point B is looked as an edge point. The principal connection

ath sought by applying the Dijkstra twice is a path starting from

ne edge point to another farthest one thus being always able to

eflect the principal geometric structure of the data. And this has

nsured the effectiveness of the CST algorithm. 

. Experiments 

In this section a serial of comprehensive experiments are per-

ormed to examine the CST. The dataset is unfolded by the CST

nd then reduced into lower dimensions via PCA. Therefore, our

pproach is indicated as CST+PCA in the experiments as fol-

ows. Furthermore, many notable dimensionality reduction tech-

iques are selected to compete, including PCA, Isomap, LLE, LE,

M, LTSA, MVU, Hessian LLE (HLLE) [18] , KPCA, Sammon mapping

19] . To make a full comparison of these techniques, five artificial

atasets and five real datasets are taken as testing data. The arti-

cial datasets focus on multi-region and irregular sampling cases

hich are common in real-world applications. And the choice of

eal datasets lays more stress on comprehensiveness, consider-

ng the variety in dimensions, number of samples, and domains.

urthermore, to better compare the performances quantitatively,

ll the selected real datasets contain label information. And it is

easonable to assume that the data points with different labels

re on different subregions. Note that the label information is only

sed after the datasets are reduced in dimensions. Therefore, all

he techniques used in the experiments are unsupervised. In next

ubsection, we introduce some quantitative evaluation items. 

.1. Experimental setting 

All the artificial datasets are mapped from a three-dimensional

3D) space onto a two-dimensional (2D) plane. Since the data with

hree dimensions or less can be directly visualized on the corre-

ponding coordinate systems, and the artificial datasets are all 3D

ata, the performances of different techniques on these datasets

an be directly compared. The dimensions of the real datasets are

ypically greater than three, however. To get more diversity, we

ransform the real datasets to the spaces of randomly-chosen fewer

imensions. And we set up three types of quantitative evaluation

easures to better compare the dimensionality reduction results. 

The first type of evaluation measure is the preserving rate of

earest neighbors ( NR ). This measure is mainly used to inspect

n how much the lower dimensional representation preserves the

ocality (i.e., nearest neighbors) of the original dataset. The cal-

ulation is very simple. Two nearest neighbor graphs are con-

tructed on the original and dimensionality reduced data sets via
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K-NN algorithm with same K value respectively. And then the pre-

served neighbors of each point are counted. Based on this concept,

we are able to give the definitions of this measure. Suppose that

T ( a, b ) is a function returning the number of elements of the inter-

section of sets a and b . And let n be the number of data points of

the dataset and K be the value of the parameter K of K-NN. The NR

is then defined as 

NR = 

1 

K ∗ n 

n ∑ 

i =1 

T (S i , R i ) (3)

Where S i and R i are the nearest neighbor sets of the data point i

in the two graphs constructed on the original and dimensionality

reduced data sets. 

The second measure is the generalization error ( GE ). The gener-

alization errors of the K-NN classifiers are able to reflect the local

clustering of the same-class points because the classifiers test the

neighborhoods between the data points of a same class. Generally,

low GE value (which means good local clustering) often implies

good potential for classification and clustering. Here, the general-

ization errors of the 1-NN and 12-NN classifiers are measured us-

ing leave-one-out validation. To K-NN classifiers, k = 1 is the most

critical argument. Only when a data point is the same class as

its closest one, 1-NN classifiers produce correctly classified results.

This value is often used in the experiments. By contrast, it is easy

to know that k = 12 is the loosest argument in the usual range

(8–12) based on the similar analysis. We use both k = 1 and k = 12

for more comprehensive measurements (compared with using only

k = 1 ). Unlike previous evaluation items, the smaller, the better for

GE . 

To make the experiments more convincing and trustable, we

employed the Support Vector Machine (SVM) and Back Propagation

(BP) Neural Network for classification on the original and dimen-

sionality reduced datasets. And we adopted One-Vs-The-Rest strat-

egy to reduce the problem of multiclass classification to multiple

binary classification problems. The training and classification func-

tions of SVM are directly from the Statistics and Machine Learning

Toolbox of Matlab 2014a. We choose least squares as the method

to find the separating hyperplane for function svmtrain. Other ar-

guments of svmtrain adopt the default values. The source code of

BP Neural Network is downloaded from Phil Brierley [20] . And we

used only default values for the experiments. The real datasets are

divided into two subsets, with 90% of samples for training and the

other 10% for testing. The measures are obtained by averaging of

10-fold cross validation. 

Amidst the techniques used in the experiments, the CST+PCA,

Isomap, LLE, LE, LTSA, MVU and HLLE are dependent on nearest

neighbor graphs. And the graphs are all constructed via K-NN algo-

rithm with K = 10 in the experiments. The other parameter of the

CST+PCA is U = 1 . And the other parameter of LE is σ = 1 . The two

parameters of DM are set to t = 10 and σ = 1 . The KPCA using lin-

ear kernel equals to traditional PCA, and the KPCA using Gaussian

kernel resembles to Diffusion Maps [12] . Thus, a polynomial ker-

nel with K(x, y ) = (x.y + 1) 5 is provided to the KPCA in the exper-

iments. PCA and Sammon have no parameters for setting. We ran

the experiments for the parameter settings described above, and

recorded the corresponding measurement items. For the NR and

GE , we only present the recorded result of each technique. And for

the SVM recognition rates, we take a mean accuracy of ten runs of

a technique on each real dataset. 

4.2. Experiments on artificial datasets 

Amidst the five artificial datasets, Changing-Swiss-roll and 3D-

Clusters are generated by drtoolbox [21] . Suspending-peaks are

adapted from the Twin-peaks dataset generated by drtoolbox.

Other two datasets, Overlapped-hemispheres and Nested-C, are
enerated by ourselves. The numbers of data points of these

atasets range from 1600 to 20 0 0. The 3D datasets are reduced

o 2D by the selected techniques and then plotted on a plane. On

he 2D plotting, we firstly inspect the separation between different

ata patches(or clusters). And inside each patch, we further check

f the locality is still kept. To this end, we turn to observe whether

he data patches are unfolded well. In the followings, we compare

he results of each dataset in detail. 

(1) Overlapped-hemispheres data in Fig. 4 . This dataset con-

ists of one small hemisphere covered by another bigger one. The

ST+PCA and MVU were able to separate the two hemispheres

ith each hemisphere unfolded well and their size ratio kept, but

he shapes in the MVU low-dimensional representation were not

o smooth and regular as those in the CST+PCA representation. The

LE failed to keep the size ratio and the unfolding was not as good

s the CST+PCA and MVU. The Isomap, LTSA, HLLE and LE were

lso able to separate two hemispheres, but they failed to unfold

t least one part. The PCA, DM, Sammon and KPCA projected the

mall hemisphere into the bigger one. (2) Nested-C data in Fig. 5 .

his dataset contains two C-shape patches with one nested into

he other. The CST+PCA was able to separate the two patches with

ach one unfolded well and their size ratio kept. The Isomap, LLE

nd LE were also able to separate the two parts, but they failed to

nfold at least one. The two patches unfolded by the MVU nearly

ouched together and lost their size ratio. The PCA, DM and Sam-

on gained the similar incorrect low-dimensional representation.

he KPCA mixed two patches into a fan-like minor sector. The LTSA

nd HLLE produced a cross-like shape. 

(3) Suspending-peaks data in Fig. 6 . This dataset consists of four

eaks with one pair suspending under and the other pair floating

ver a grid-like base frame. The CST+PCA, LTSA, Sammon and HLLE

ere able to correctly visualize the four peaks as well as the base

rame. The PCA and DM projected the dataset from an improper di-

ection, thus unable to display the base frame correctly. The MVU

nd LLE only unfolded the dataset partly, and some components

ere not able to be identified. The LE, Isomap and KPCA only pro-

uced some intertwining lines. 

(4) 3D-Clusters data in Fig. 7 . The Sammon and CST+PCA were

ble to separate the six clusters with each cluster deployed well.

he Sammon outperformed the CST+PCA as far as unfolding is con-

erned. The Isomap made two clusters shrunk to short lines. The

LLE, LE and LTSA failed to unfold each cluster although they sep-

rate the six clusters. The MVU failed to unfold two clusters with

ne cluster overlapped by another one. The PCA and DM made two

airs of clusters overlapped. The LLE and KPCA performed poorly

n both unfolding and separation. 

(5) Changing-Swiss-roll data in Fig. 8 . This dataset is sampled

rom a Swiss roll with irregular sampling rates. It is very challeng-

ng for most dimensionality reduction techniques. The CST+PCA

as able to unfold the Swiss roll correctly despite the imperfect

hape. The Isomap produced a curve-like shape. The Swiss roll was

ade overlapped heavily by the rest techniques. 

In general, the CST+PCA performs well on all the five artificial

atasets in terms of both correct separation and good unfolding.

onsidering correct separation alone, all techniques can be ranked

s: CST+PCA (5), Isomap (4), HLLE (3), LTSA (3), LE (3), Sammon (2),

VU (2), LLE (2), PCA (0), DM (0), KPCA (0). The number following

ach technique indicates on how many datasets the technique is

ble to do correct separation. Therefore, even not taking unfolding

nto account, the CST+PCA is still among the best techniques. 

.3. Experiments on real datasets 

Artificial data, after all, are just a very simple simulation of

eal data. The performances of techniques on real data tend to

e more valuable. For this reason, we selected five real datasets
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Fig. 4. Two-dimensional plotting results of the Overlapped-hemispheres data. 

Fig. 5. Two-dimensional plotting results of the Nested-C data. 

c  

t  

C  

w  

t  

n  

a  

d  

p  

t  

C  

t

 

i  

i  

t  
oming from different domains: (1) the ORL face dataset [22] , (2)

he Libras Movement dataset, (3) the Climate Model Simulation

rashes dataset, (4) the Ecoli dataset, and (5) the Semeion Hand-

ritten Digit dataset. The latter four datasets are downloaded from

he UCI Machine Learning Repository [23] . All the datasets are

ormalized before dimensionality reduction. All the five measures

re shown on the tables. Therefore, the experimental result of a

ataset corresponds to one table. In the following, we compare the
erformances of different techniques on each dataset. Note that

he Ori, CPCA, ISO, and Sam are the abbreviations for Original,

ST+PCA, Isomap, and Sammon, respectively, in Tables 1–5 . And all

he values in these tables are percentage. 

(1) The ORL data in Table 1 . The ORL dataset used in the exper-

ments is a face recognition dataset that contains 400 gray scale

mages of 32 × 32 pixels that depict 40 faces under various condi-

ions (i.e., the dataset contains 10 images per face). In Table 1 , the
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Fig. 6. Two-dimensional plotting results of the Suspending-peaks data. 

Fig. 7. Two-dimensional plotting results of the 3D-Clusters data. 

Table 1 

The evaluation of 10 D representation of the ORL data. The best values are in the bold style. 

Item Ori CPCA PCA ISO LLE LE DM LTSA MVU HLLE KPCA Sam 

NR 100 67.75 71.06 45.27 46.33 55.15 40.29 23.13 46.88 22.10 37.29 73.77 
GE 

(k =1) 5.25 11.50 9.25 29.50 14.25 32.50 30.57 42.50 32.50 70.00 38.50 8.50 
GE 

(k =12) 31.00 50.75 43.00 51.75 43.00 50.50 62.25 71.00 64.75 75.75 66.00 33.50 

SVM 88.00 70.83 63.33 65.00 58.33 63.33 57.50 20.00 67.96 48.67 57.33 65.67 

BP 57.50 51.85 47.50 35.73 39.22 40.54 51.50 35.88 20.65 46.25 48.69 43.76 
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Fig. 8. Two-dimensional plotting results of the Changing-Swiss-roll data. 

Table 2 

The evaluation of 4D representation of the Libras Movement data. The best values are in the bold style. 

Item Ori CPCA PCA ISO LLE LE DM LTSA MVU HLLE KPCA Sam 

NR 100 78.68 78.52 62.62 29.47 59.05 40.86 57.22 24.94 22.52 42.73 60.02 
GE 

(k =1) 13.05 20.00 20.00 25.83 46.66 36.11 37.50 22.22 50.00 70.00 36.66 31.63 
GE 

(k =12) 39.72 39.44 36.94 39.44 63.89 48.33 50.00 50.00 64.16 75.00 54.44 43.43 

SVM 64.44 61.11 50.00 56.67 52.96 59.63 52.96 52.59 41.67 47.78 47.78 53.75 

BP 72.22 64.14 52.00 63.89 52.77 25.00 4 4.4 4 27.78 46.53 63.33 58.63 27.78 

Table 3 

The evaluation of 3D representation of the Climate Model Simulation Crashes data. The best values are in the bold style. 

Item Ori CPCA PCA ISO LLE LE DM LTSA MVU HLLE KPCA Sam 

NR 100 57.59 8.13 8.41 7.80 14.15 7.41 8.04 8.37 7.39 5.96 8.04 
GE 

(k =1) 11.48 14.26 16.11 14.07 13.33 15.37 15.74 15.74 13.33 15.56 15.19 15.37 
GE 

(k =12) 7.04 9.44 9.63 8.89 8.70 8.70 8.70 8.52 8.52 8.52 8.52 8.52 

SVM 86.67 74.07 61.11 60.74 56.30 61.48 64.44 26.67 56.05 25.93 69.15 63.44 

BP 96.27 98.15 98.00 79.63 98.15 96.30 96.30 94.44 95.66 97.15 50.00 83.33 

Table 4 

The evaluation of 2D representation of the Ecoli data. The best values are in the bold style. 

Item Ori CPCA PCA ISO LLE LE DM LTSA MVU HLLE KPCA Sam 

NR 100 74.46 38.53 25.18 22.67 37.07 14.53 16.84 10.98 12.31 20.91 42.80 
GE 

(k =1) 18.24 25.40 26.38 25.41 44.96 19.87 35.18 38.76 42.67 40.72 40.72 20.85 
GE 

(k =12) 13.03 17.26 16.94 19.87 38.11 15.64 28.01 37.46 38.11 38.76 39.74 16.61 

SVM 83.90 85.56 74.44 61.84 60.61 83.06 61.84 64.94 67.96 46.38 42.42 81.39 

BP 100 90.00 86.68 70.00 76.67 76.67 83.33 46.67 66.32 96.67 16.67 83.33 

Table 5 

The evaluation of 8D representation of the Semeion Handwritten Digit data. The best values are in the bold style. 

Item Ori CPCA PCA ISO LLE LE DM LTSA MVU HLLE KPCA Sam 

NR 100 59.44 55.77 46.03 33.61 43.34 20.63 3.58 35.29 7.74 20.24 57.59 
GE 

(k =1) 7.78 10.42 9.42 11.93 16.94 11.17 35.46 69.05 12.55 54.48 27.93 9.66 
GE 

(k =12) 9.92 14.24 8.29 10.80 17.71 13.11 36.40 70.24 14.57 50.22 27.87 8.53 

SVM 75.68 69.81 65.83 67.77 61.39 47.99 57.95 60.47 56.05 47.78 65.83 67.84 

BP 81.76 74.59 70.82 74.22 70.82 67.04 72.14 61.58 53.85 50.57 71.45 64.53 
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NR value of CST+PCA, 67.75%, was only a slightly less than the best

one, 73.77%, ranked third behind Sammon and PCA. This means

the CST+PCA is among the best in preserving the local structure.

The GE(k = 1) of CST+PCA ranked same as NR , which gives the

CST+PCA a good probability for pattern recognition. And the best

SVM and BP recognition rates demonstrated that CST+PCA is good

for later pattern recognition. The GE(k = 12) seems not relevant

to other items very much. Therefore, the GE(k = 1) may be more

meaningful for evaluating the performance. 

(2) The Libras Movement data in Table 2 . The Libras Movement

dataset contains 15 classes of 24 instances each. Each class refer-

ences to a hand movement type in LIBRAS (Portuguese name ’Lin-

gua BRAsileira de Sinais’, official brazilian signal language). And

each movement is represented by 90 features. As the NR val-

ues in Table 2 shows, the CST+PCA presented the best GE(k = 1)

value and the best preserving rate of nearest neighbors. And the

CST+PCA had also the best SVM and BP recognition rates. More-

over, the GE(k = 12) was only less than that of PCA in Table 2 . Al-

though PCA did well on the first three testing items, the CST+PCA

still a little outperformed PCA in SVM and BP recognition. This

shows that the CST is able to improve the performance of PCA. 

(3) The Climate Model Simulation Crashes data in Table 3 . This

dataset contains records of simulation crashes encountered during

climate model uncertainty quantification (UQ) ensembles. Each en-

semble comprises 18 climate model input parameter values. Three

separate Latin hypercube ensembles were conducted, each contain-

ing 180 ensemble members. The goal is to use classification to pre-

dict simulation outcomes (fail or succeed) from input parameter

values. Surprisingly, the CST+PCA had much better NR value than

any other techniques. And consequently, the CST+PCA had also the

best SVM recognition rate. Moreover, the BP recognition rate and

generalization errors of the CST+PCA were as good as or better

than those of the other techniques as well. Therefore, the advan-

tages of the CST+PCA are noticeable on keeping local structure and

improving the recognition performances. 

(4) The Ecoli data in Table 4 . This dataset is used for predicting

protein localization sites. The dataset contains 8 classes of 336 in-

stances where each class refers to a localization site depicted with

7 attributes. And we removed three classes which contain only less

than 5 instances. According to the information in Table 4 , we could

achieve similar analytical results as in the Climate Model Simu-

lation Crashes data. The preserving rate of nearest neighbors ob-

tained from CST+PCA was much higher than those obtained from

other techniques. And the SVM recognition rate of the CST+PCA

was still better than the other techniques. This also demon-

strates that the CST+PCA is more widely applicable than the other

techniques. 

(5) The Semeion Handwritten Digit data in Table 5 . The Se-

meion Handwritten Digit dataset is a dataset of 1593 scanned

handwritten digits from around 80 persons. Each digit is stretched

in a rectangular box 16 × 16 in a binary scale. The CST+PCA showed

no advantages with respect to the GE(k = 1) and GE(k = 12) mea-

surements. As the Table 5 shows, however, the CST+PCA achieved

best values in NR , SVM and BP tests. Although there were no big

gaps between the best values and the their successors, it is at least

able to say that the CST+PCA is among the best techniques regard-

ing this dataset. 

In the five-real-dataset experiments, the CST+PCA occupied

most of the best pattern recognition. And the CST+PCA also out-

performed all other techniques in the NR evaluation on three

datasets. To visually and numerically compare the techniques, we

assign an integer to a technique for each evaluation according to

the ranking of performance. For example, a technique ranking 1

(or 2) ,which means best, gains value 1 (or 2), and so on. The

larger the value, the worse the performance. Finally, we average

the ranking values for each technique over the five-real-dataset
xperiments. According to this rule, the techniques can be ranked

s: CST+PCA(2.32), Sammon (3.72), PCA(4.04), Isomap(4.96), LE

4.96), LLE(6.40), DM(6.68), MVU(7.32), KPCA(7.40), LTSA(8.08),

LLE(8.72). The value following each technique is the averaged

anking value. The ranking clearly shows the improvement of PCA

ia the CST preprocessing. 

Combining the two groups of experiments, it is clear that the

ST tends to unfold the data so that the geometric structure of the

ata becomes simpler. This preprocessing lays a good foundation

or later PCA processing. Therefore, with the CST support, the PCA

s still able to produce good results even for the datasets that those

onlinear techniques perform poorly on. Besides, we can see from

he experiments that the CST is applicable to different datasets,

howing strong robustness. 

. Conclusions and discussions 

Based on the CST principle, we are able to know that the CST

s at least much suitable for such kind of multi-class data: (1) each

lass of points is clustered together. Therefore, one class of points

orresponds to one cluster. (2) These clusters are located in such

 chaotic way that no matter what hyperplane is used as the pro-

ecting plane, there are always some clusters overlapped. And of

ourse, we believe the CST is not only limited to such kind of data.

he Experiments on both artificial and real datasets showed the

ood performance of the CST towards different types of data. 

As a matter of fact, the geometric structures of the dataset

ecomes simpler after the CST unfolding, even the PCA can be

ood enough for the following dimensionality reduction on most

atasets. This is the main contribution of this article. Existing non-

inear techniques may either require strong assumptions on the in-

ut data or need careful parameter tuning. By contrast, the pro-

osed CST algorithm does not depend on strong assumptions. Also

he parameter setting for the CST is not burdensome. 

In conclusion, by the novel idea of geometric structure sim-

lification, we introduced a data preprocessing method for PCA

or other linear projection methods) from a geometric perspective.

omprehensive experiments demonstrate that the CST algorithm

an unfold the nonlinear geometric structures into a simpler struc-

ure. In this way, the original complicated dataset could become

ore tractable for linear dimensionality reduction methods. In the

uture we would investigate how to incorporate label information

n this preprocessing algorithm for better discriminant capability

n classification problems. 
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