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Chapter 1
Markerless Tumor Gating and Tracking for
Lung Cancer Radiotherapy based on Machine
Learning Techniques

Abstract The respiratory lung tumor motion poses great challenge for radiation
therapy of lung cancer patients. Traditional methods leverage external surrogates or
implanted markers to indicate the position of tumors, but these methods suffer from
inaccuracies or the risk of pneumothorax. In this chapter fluoroscopic images are
employed to indicate the tumor position. We show how machine learning techniques
can be used for tumor gating and tracking. Experimental results demonstrate the
effectiveness of this new method without external or implanted markers. We also
discuss some problems about this new method and point out new promising research
frontiers.

1.1 Introduction

Lung cancer, also known as lung carcinoma, is the leading cause of cancer-related
death worldwide [37]. One of the common treatments is radiotherapy. A major
difficulty in conformal lung cancer radiotherapy is respiratory organ motion, which
may cause clinically significant targeting errors. Accordingly, there is an urgent need
to locate the position of moving tumors accurately in the process of tumor gating
and tracking. In this chapter, we demonstrate how machine learning techniques can
be applied to tumor gating and tracking. Also the experimental results are reported
for using these new methods.

1.1.1 Prior Work on Tumor Gating

A major uncertainty in treating lung cancer with radiation is the respiratory lung
tumor motion, which can be clinically significant for some patients. Respiratory
gated lung cancer radiotherapy holds promise to precisely deliver prescribed ra-
diation dose to the tumor, while minimizing the incidence and severity of normal
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tissue complications [11]. Respiratory gating limits radiation exposure to a portion
of the breathing cycle when the tumor is in a predefined gating window. Due
to a reduced planning target volume, precise target localization in real time is
particularly important for gated radiotherapy [12].

Several template-matching methods have been proposed for attacking the fluo-
roscopic markerless gating problem [4] [6]. However, template matching does not
utilize the information outside the gating window in building templates, which could
be important for improving the accuracy and robustness of the algorithm. Recently,
the gating problem has been regarded as a binary classification problem that can
be solved by support vector machine (SVM) [39] combined with a dimensionality
reduction technique called principal components analysis (PCA). This method
achieves slightly higher accuracies compared to the template matching methods at
the price of significant amount of training time to search the optimal parameter set
[7].

Dimensionality reduction and classification are two essential parts in machine
learning algorithms. Selecting the right dimensionality reduction technique and
classification algorithm could improve the final accuracies. In this work, we adopt
the same binary classification framework as proposed previously [7]. Within this
framework, we investigate four other dimensionality reduction techniques besides
PCA, namely locally linear embedding (LLE), local tangent space alignment (LT-
SA), Laplacian eigenmap (LAP) and diffusion maps (DMAP) [18]. PCA is one
of the most widely used dimensionality reduction techniques. It finds the best
linear representation of the data in the mean-square sense. Unlike PCA, these
four algorithms belong to “manifold learning” algorithms, which represent the
latest nonlinear dimensionality reduction techniques. In the recent literature, these
algorithms have demonstrated better performance than classical dimensionality
reduction techniques such as PCA, especially on curved and nonlinear data sets [31].
Specifically, the benefit of any manifold learning method over classical methods
was shown on the famous Swiss roll dataset, which is curved and nonlinear.
Linear methods such as PCA often fail while most manifold learning methods
can successfully model the Swiss roll dataset. In exploratory data analysis, the
linearity assumption often does not hold. It is therefore also important to investigate
nonlinear dimensionality reduction techniques despite their higher computational
cost. For classification, in addition to SVM, we combine the dimensionality re-
duction techniques with a three-layer artificial neural network (ANN) for gated
lung cancer radiotherapy. The performance of the proposed algorithms is evaluated
in a retrospective fashion on ten fluoroscopic video sequences of nine patients.
We will compare the performance of ANN with SVM when combined with the
aforementioned five dimensionality reduction techniques.
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1.1.2 Prior Work on Tumor Tracking

Lung cancer radiotherapy is challenging even for patients with localized disease
limited to the thorax. In-field recurrences are common, despite the use of concurrent
chemotherapy and increasing doses of radiation. While tumor biology likely influ-
ences the aggressive clinical course of most lung cancers, targeting inaccuracies
may also cause geographical miss, resulting in poor locoregional control with
radiotherapy. A major source of targeting inaccuracy is from the respiration-induced
lung tumor motion [11].

Two major classes of techniques have been developed to manage respiratory
tumor motion. The main idea for the first class of techniques is to allow the
tumor to move freely relative to the treatment beams and try to integrate the
motion effect into the treatment plan (geometrical or dosimetric). These techniques
include: 1) patient population based internal margin; 2) patient specific internal
margin; 3) internal target volume (ITV) method; 4) IMRT optimization using motion
probability density function (PDF) [38] [11]. The main idea for the other class of
techniques is to freeze the tumor motion relative to the treatment beams, which
roughly divides into two categories: 1) control the tumor motion, using techniques
such as breath holding, forced shallow breathing, or abdominal compression; 2)
allow free tumor motion but adjust the treatment equipment to maintain a constant
target position in the beams eye view when the beam is on, through respiratory
gating, beam tracking, or couch-based motion compensation [11].

The beam tracking technique follows the target dynamically with the radiation
beam. It was first implemented in a robotic radiosurgery system [1] [26] [32] [23]
[22]. For linac-based radiotherapy, tumor motion can be compensated for using a
dynamic multi-leaf collimator (MLC) [13] [14] [24] [27] [35] [28] [29] [40] [41]
[42] [25]. Beam tracking could be the best technique for stereotactic body radiation
therapy (SBRT) due to its potentially high treatment efficiency and precision.
Although there are still many technical challenges, one of which is how to track
the tumor location in real time with high precision.

Previous tumor tracking approaches can be roughly grouped into three cat-
egories: (1) deriving the tumor position based on external surrogates, such as
the patient abdominal surface or lung volume [11]. The relationship between the
external surrogates and the internal tumor position can vary from day to day,
and even during the treatment of the same day. Therefore, this approach is often
considered to suffer from lack of accuracy. (2) Fluoroscopic tracking of radiopaque
fiducial markers implanted inside or near the tumor [33] [36]. The accuracy of
this technology is better than 1.5 mm for tracking moving targets [34], which
is much higher than the external surrogates approach. Another implementation
of marker tracking is based on non-ionizing electromagnetic fields, using small
wireless transponders implanted in human tissue [3]. However, no matter how
marker tracking is realized, as long as the percutaneous marker implantation is
involved, the clinical implementation of this technology in lung cancer radiotherapy
is limited due to the risk of pneumothorax [2] [9]. (3) Fluoroscopic tracking of the
lung tumor without implanted fiducial markers. Some conventional motion tracking
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methods commonly used in computer vision, such as template matching, optical
flow, and active shape model [8] [43] [44] have been proposed for tumor tracking.
These tracking methods achieve promising results when the tumor has reasonably
high contrast and clear boundary in the images. However, these methods would fail
when the image quality is poor and the tumor is hard to identify in the images (even
by human eyes), which is often the case for lung cancer fluoroscopic images.

Tracking the lung tumor in fluoroscopic image sequences is a very challenging
task because, compared to the colored video sequences that are often seen in the field
of computer vision, the fluoroscopic image sequences have much less information
(gray scale versus true color and less texture), and also in most cases the tumors do
not have clear shape boundaries. Additionally, the image quality is poor in many
situations. Therefore, traditional tracking algorithms developed for computer vision
applications may not be applied to fluoroscopic tumor images. In this chapter we
propose a novel tumor tracking algorithm to solve this problem by using some
“surrogate” regions.

1.2 Tumor Gating

The goal of gated radiotherapy is to decide when to turn the beam on or off. There-
fore, the gating problem can be reformulated as a binary classification problem. That
is, the problem now becomes finding a decision boundary that will separate future
fluoroscopic images into two classes: beam ON or beam OFF. The classification
algorithms are employed to learn an optimal decision boundary based on a training
data set.

1.2.1 Fluoroscopic Image Data

Prior to treatment, a sequence of fluoroscopic images are acquired for training the
classifier. A region-of-interest (ROI) containing the tumor motion is selected on
the training fluoroscopic images. Each ROI is manually labeled by human expert
observers with either class beam ON or beam OFF based on the gating window
size determined during treatment planning. In patients where the tumor was hard
to identify visually in the fluoroscopic images, an anatomical structure nearby the
tumor was used.

Figure 1.1 shows an example of a set of training fluoroscopic images and the
selected ROIs. The first two ROIs are within the gating window and labeled as beam
ON class, and the next four are outside the gating window and thus labeled as beam
OFF class.
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Fig. 1.1 A set of training fluoroscopic image sequence (left) and the selected ROI images (right).

1.2.2 Dimensionality Reduction Techniques

The purpose of dimensionality reduction is twofold. First, it can reduce the training
sample size and therefore decrease the computational cost. A typical ROI size could
be 100×100 pixels. This means that the dimensionality of a training sample would
be 100 × 100 = 10000. Significant computational time and resources would be
needed with these high dimensional samples. Clearly this is not practical for real-
time gated radiotherapy. With dimensionality reduction, the dimensionalities of the
training samples can be significantly reduced, and consequently much computation-
al time and resource would be saved. Secondly, it can be regarded as extracting
significant features of the ROI data automatically. A dimensionality reduction
technique will automatically sort the information based on its importance and
retain the most important components. For instance, PCA involves a mathematical
procedure that transforms the original correlated variables into a small number of
uncorrelated variables called principal components. The first principal component
accounts for as much of the variability in the data as possible, and each succeeding
component accounts for as much of the remaining variability as possible.

Besides PCA, four other dimensionality reduction techniques are investigated in
this work, including LLE, LTSA, LAP and DMAP [18]. These four manifold learn-
ing methods find a nonlinear transformation by preserving neighborhood distances.
Most manifold learning methods need two key parameters, one to describe the
neighborhood size and one to describe the intrinsic dimension or output dimension.
The results might be very different if these two parameters are varied. A detailed
comparison of different dimensionality reduction techniques can be found in [18].

We first map each training ROI image into a 30-dimensional linear space using
PCA. Then, we further reduce the dimensionality of the training ROI image to 10
using the five methods described above. These features lie in a significantly lower
dimensional space compared with the original ROI image and will be fed later into
the classification algorithms as the input.
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1.2.3 Artificial Neural Network (ANN)

Fig. 1.2 A simple neural network with three-layer neurons. In this figure, there are 4 neurons in
the input layer, 2 neurons in the hidden layer, and 1 neuron in the output layer.

A neural network is an effective computational model for pattern classification
and function approximation (or called regression analysis). It is inspired by the
way the biological nervous system processes information. ANN is a massively
parallel system with large numbers of interconnected simple processors, and it can
solve many challenging computational problems. An ANN can learn any arbitrarily
complex target function by adding neurons and layers to the network. A target
function is learned by adjusting the weights of the network. These weights are
tuned by minimizing a least-squares error optimization function through a back-
propagation algorithm. For this gating problem, we employ a standard three-layer
neural network with an error back-propagation algorithm. Figure 1.2 illustrates an
example. In our gating system, the input layer has ten neurons to match the ten-
dimensional input data after dimensionality reduction. There are five neurons in the
hidden layer and only one neuron in the output layer.

A trained ANN can be thought of as an “expert” to analyze the training data.
In our gated lung radiotherapy application, a trained ANN automatically processes
the fluoroscopic images acquired during the simulated treatment and classify them
into the beam ON or beam OFF class and then generate the corresponding gating
signals.
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1.2.4 Simulated Treatment Delivery

During simulated treatment in this retrospective study, ROI at the same location in
the training fluoroscopic images is automatically selected on each new fluoroscopic
image acquired during simulated treatment. The same dimensionality reduction
technique is applied on the newly coming ROIs. The trained ANN is then applied
to automatically process each ROI with the reduced dimensionality and classifies it
into either the beam ON or OFF class. Gating signals are then generated accordingly.

1.3 Tumor Tracking

1.3.1 Image Data

To develop and evaluate the proposed algorithm, fluoroscopic image sequences for
9 lung cancer patients were acquired at a speed of 15 frames per second using an on-
board x-ray imaging (OBI) system (Varian Medical Systems, Palo Alto, CA, USA).
One patient had tumors in both left and right lungs. Therefore, 10 fluoroscopic
sequences were used retrospectively. Figure 1.3 shows the first frames of these 10
fluoroscopic image sequences. The average video length is about 40 seconds (i.e.
600 frames). For each patient, 15 seconds of fluoroscopic images (225 frames)
at the beginning of the sequence are used as training data. The remaining data
are used for testing the algorithm. The tumor positions are manually identified by
human observers to serve as the “gold-standard” ground truth. All our algorithms
are implemented in Matlab.

1.3.2 Outline of the Tracking Method

The proposed algorithm is based on the observation that the motion of some
anatomic features in the images (called “surrogates”) may be well correlated to the
tumor motion. The correlation between the tumor position and the motion pattern
of surrogates can be captured by regression analysis techniques. The proposed
algorithm consists of four main steps: 1) selecting several surrogate windows; 2)
extracting spatiotemporal patterns from the chosen surrogate windows; 3) establish-
ing regression relations between the tumor position and the spatiotemporal patterns
of surrogates; and 4) predicting the tumor location with the established regression
model based on surrogate spatiotemporal patterns. The preceding three steps are
done using training image data before the treatment, whereas the fourth step is done
using the image data acquired during the treatment delivery in real time.

A few surrogate windows are created in the first frame of the training image
sequence, which are assumed to be more or less correlated with the tumor motion.
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Fig. 1.3 First frames of 10 fluoroscopic image sequences used for testing the proposed tracking
algorithm.

Fig. 1.4 Left: the selection of surrogate windows (green rectangular regions) on the first frame of
the fluoroscopic image sequence. Note that the tumor area is marked in a red rectangle. Right: The
selected three surrogate windows.

In the remaining training frames, the location of a surrogate window is fixed while
the image content moves inside it. One window could be placed to contain the
diaphragm, if visible in the image, which usually has a strong correlation with tumor
motion in the superior-inferior (SI) direction (y-direction in the image coordinates).
Other windows can contain any visible moving anatomic structures such as the
lung boundary or even the tumor itself. In our preliminary experiments, only three
surrogates are selected and placed on the diaphragm, the lung boundary, and the
tumor itself, as shown in Figure 1.4. The diaphragm is closely related to the tumor
motion in y-direction, and the nearby lung wall correlates to the tumor motion in
x-direction (lateral). If the image quality is acceptable and the tumor itself has
clear shape, the surrogate window containing the tumor itself can also be helpful
to predict the tumor position.

The images in the selected surrogate windows are not tracked directly. Instead,
we use the principal component analysis (PCA) to map each surrogate window
to a low-dimensional space to get a compact coordinate representation. In our
experiments, based on the eigenvalues, we choose to use the most important three
of principal components to represent a surrogate window. The coordinate represen-
tation of three surrogate windows are denoted as (z1,z2, · · · ,z9), where (z1,z2,z3)
is for the first window, (z4,z5,z6) is for the second, and (z7,z8,z9) is for the last.
Figure 1.5 shows the 3D representations of the three surrogate windows in the PCA
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Fig. 1.5 3D representations of the three surrogate windows in the PCA embedding space. Left: the
window containing the diaphragm. Middle: the window containing the lung boundary. Right: the
window containing the tumor itself.

Fig. 1.6 3D PCA embedding of the diaphragm images, and representative images are shown next
to the red circled points at different locations in the trajectory.

embedding space. We can see that a surrogate window is reduced to a point in the
3D PCA space, which follows a well-defined trajectory. It also appears that the more
clear the anatomic features in the window, the better defined the trajectory is. The
location of a surrogate window selected on the first training frame is fixed for the
remaining frames while the image content moves inside it, yielding the trajectory in
PCA space. This is illustrated in Figure 1.6, where representative images are shown
next to red circled points at different parts of the trajectory in the 3D PCA space.
As the diaphragm moves up and down, the corresponding point in 3D PCA space
moves along the trajectory from one end to the other.

Figure 1.7 illustrates the curve representations of tumor positions (x,y) and 3D
coordinates of three surrogate ROIs in PCA space. We can observe that there is a
strong correlation between tumor positions and surrogate coordinates. The third step
mentioned earlier is to build a regression model to predict the tumor position (x,y)
based on the parametric representations of surrogate ROIs (z1,z2, · · · ,z9).
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Fig. 1.7 Curve representations of tumor positions (x,y) and 3D coordinates of three surrogates
(z1,z2, · · · ,z9) in PCA space.

1.3.3 Principal Component Analysis (PCA)

PCA is a classic technique to reduce dimensionality with minimum loss of infor-
mation. In our case, the original dimension is the size (or the number of pixels)
in the ROIs. That is, if an ROI consists of 50 × 50 pixels, the dimension is
n = 50× 50 = 2500. Let Σ = 1

n ∑n
i=1(xi − x̄)(xi − x̄)T be the n× n data covariance

matrix, where xi is an n-dimensional column vector of data point, and x̄ is the sample
mean. Specifically, xi represents the image at time i in a fixed surrogate window
with n pixels, and set X = [x1, · · · ,xm] as the available m frames of images in the
window. Let U = [u1,u2, · · · ,ud ] be the unit eigenvectors corresponding to the d
largest eigenvalues (λ1,λ2, · · · ,λd) of the covariance matrix, such that ΣU = UΛ
where Λ = diag[λ1,λ2, · · · ,λd ]. Then we obtain the PCA projection Y = UT X̃ ,
where X̃ = X(I − eeT/k) is the zero mean version of the original data X , and Y
is a d ×m matrix representing the embedded results. Here e is a column vector of
all ones. Geometrically, U = [u1,u2, · · · ,ud ] forms a set of incomplete orthonormal
basis for the data space, and the original data points have the largest diversity in
these basis directions.

1.3.4 Regression Analysis

In order to predict the tumor position, a regression model should be established
between the tumor position and the parametric representation of ROIs in the PCA
space. Four regression methods are employed and compared for this end, includ-
ing linear regression, two-degree polynomial regression, artificial neural network
(ANN) and support vector machine (SVM). Note that ANN and SVM can be used
for both regression and classification. In regression, target outputs can be any real
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numbers, whereas in classification target outputs have to be integers to indicate
different discrete classes.

1.3.4.1 Linear Regression

Suppose we want to predict the target value y from an p-dimensional input vector
z = [z1,z2, · · · ,zp] with a linear model y = a0 +∑p

i=1 aizi. This can be written as a
matrix form: y = Zα + ε , where y is an m× 1 vector formed by m observations
of target values, Z is an m× p matrix of input predictors, α is a p× 1 vector of
regression parameters, and ε is an m× 1 vector of random noise. The parameter
vector α can be computed by the least-squares solution α = (ZT Z)−1ZT y, or α =
(ZT Z+λ I)−1ZT y for the regularized solution with a small scalar λ .

1.3.4.2 Two-degree Polynomial Regression

In this case we predict the target y from an p-dimensional input vector z= [z1,z2, · · · ,zp]
with a two-degree polynomial model y = a0+∑p

i=1 aizi+∑p
i=1 ∑p

j≥i ai jziz j. This can
be treated as a linear predictor where the input vector changes to be

z̃ = [z1,z2, · · · ,zp,z2
1,z1z2, · · · ,z1zn,z2

2,z2z3, · · · ,z2zp, · · · ,z2
p].

The computation procedure is simply same as that in the linear regression model.

1.3.4.3 Artificial Neural Networks (ANN)

A typical neural network has three layers (with an example shown in Figure 1.2):
input layer, hidden layer and output layer. The output values of the output neurons
represent target labels (discrete numbers) for classification or target values (real
numbers) for regression. In our regression application, there are two output neurons
to provide prediction results of the tumor position (x and y coordinates). The
weights of this network are learned through the back-propagation method where
the optimization problem can be efficiently solved by stochastic gradient descent
(SGD).

1.3.4.4 Support Vector Machine (SVM)

SVM has become a standard tool for pattern classification in a variety of domains,
and the popularity of the machine learning research is arguably attributed to the suc-
cessful applications of SVM ([39]). Given a set of data points {(x1,y1),(x2,y2), · · · ,(xm,ym)},
SVM can be used for classification (yi ∈ {1,−1}) or regression (yi ∈ R1). In
classification applications, SVM seeks to maximize the margin between two classes
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of samples:

max
2

∥ w ∥2 , s.t. yi(wT xi +b)≥ 1, i = 1,2, · · · ,m.

This is equivalent to the minimizing problem

min
∥ w ∥2

2
, s.t. yi(wT xi +b)≥ 1, i = 1,2, · · · ,m.

In the case where the data is not linearly separable, the classification task can be
solved by introducing some nonnegative slack variables:

min
∥ w ∥2

2
+C

n

∑
i=1

ξi, s.t. yi(wT xi +b)≥ 1, ξi ≥ 0, i = 1,2, · · · ,m

where C > 0 is a penalty parameter. Furthermore, a “kernel trick” can be used to
map the original data into a higher dimensional space by using a nonlinear kernel
function ϕ(·):

min
∥ w ∥2

2
+C

n

∑
i=1

ξi, s.t. yi(wT ϕ(xi)+b)≥ 1, ξi ≥ 0, i = 1,2, · · · ,m.

For regression tasks, the standard form of support vector regression becomes

min
w,b,ξ ,ξ ∗

∥ w ∥2

2
+C

n

∑
i=1

ξi +C
n

∑
i=1

ξ ∗
i ,

s.t. wT ϕ(zi)+b− yi ≤ ε +ξi,

yi −wT ϕ(zi)−b ≤ ε +ξ ∗
i ,

ξi ≥ 0, ξ ∗
i ≥ 0, i = 1,2, · · · ,m.

1.4 Experimental Results

1.4.1 Results on Tumor Gating

For this tumor gating study, ten fluoroscopic image sequences of nine lung cancer
patients have been acquired at University of California San Diego (UCSD) using
a Varian on-board imaging (OBI) system (Varian Medical Systems, Palo Alto,
CA, USA). The fluoroscopic image frequency is 15 Hz, and each image size
is 1024 × 768 pixels. The average image sequence length is about 40 second-
s (namely having around 600 frames). For each patient, 15 seconds of fluoro-
scopic images (225 frames) at the beginning of the sequence are used as train-
ing data. The rest of frames are used as testing data for validation purpose. We
used CMUs ANN implementation in C (http://www.cs.cmu.edu/afs/cs/project/ai-
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repository/ai/areas/neural/bench/0.html) and Libsvm for SVM implementation [5]
in C++. Both implementations were wrapped into DLLs that can be called from
MatLab (MathWorks, Natick, MA, USA). All other proposed computational meth-
ods were implemented in MatLab.

Table 1.1 Categories of classification results.

Ground-truth

Beam ON Beam OFF

Classification results Beam ON True Positive False Positive
Beam OFF False Negative True Negative

(a) (b)

Fig. 1.8 (a) 3D representation of the original fluoroscopic images using PCA projection, where
red and blue dots indicate ground truth of two classes. (b) Classification results: red (tp), blue (tn),
cyan (fp), and yellow (fn).

Fig. 1.9 An example of gating signal showing four kinds of classification results: true positive (tp),
false positive (fp), false negative (fn), and true negative (tn).

We define the true positive (tp), false positive (fp), true negative (tn) and false
negative (fn) in Table 1.1. Figure 1.8 shows an example of tp, fp, tn and fn. A
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sequence of fluoroscopic images are mapped onto three-dimensional space as shown
in Figure 1.8(a), where the blue points are true beam ON class and red points
are true beam OFF class. Figure 1.8(b) shows the classification results in terms
of tp, fp, tn and fn, where different color represents different category. Figure
1.9 shows an example of gating signal generated by classification results. The
corresponding tp, fp, tn and fn are displayed in the figure. The classification results
are measured in terms of the classification accuracy (CA), the recall rate (RR),
and the target coverage (TC), where CA = (t p+ tn)/all, RR = t p/(t p+ f n) and
TC = t p/(t p+ f p). Among these three metrics, TC is the most important one for
our gating application. For instance, a TC of 80% means that 80% of the prescribed
dose is delivered to the target and 20% delivered to the surrounding normal tissues.
Besides TC, duty cycle (DC) was used as another evaluation metric defined as
DC = t p/all [7]. It is easy to see that given a particular data set with a ground
truth gating signal, RR and DC are always proportional to each other independent
of what algorithms are used. Thus, they can be considered as equivalent metrics for
evaluation purpose.

Table 1.2 Performance of ANN classification combined with various dimensionality reduction
techniques. Three numbers in each cell represent the classification accuracy (CA), the recall rate
(RR) and the target coverage (TC) in percentage.

Data PCA LLE LTSA LAP DMAP

1 94.5, 79.1, 100 92.0, 80.6, 89.3 88.7, 65.7, 88.9 94.2, 81.3, 96.9 92.6, 81.7, 91.3
2 95.4, 82.7, 98.2 90.6, 82.3, 82.0 89.3, 65.0, 88.8 94.0, 80.9, 94.3 93.4, 84.2, 90.1
3 95.3, 82.6, 97.9 92.5, 80.8, 88.8 88.8, 65.1, 86.5 93.3, 81.9, 91.5 94.4, 84.0, 93.2
4 95.5, 83.3, 97.8 92.9, 83.6, 87.8 89.4, 65.1, 88.6 93.8, 82.1, 92.5 93.4, 85.6, 89.2
5 97.9, 95.8, 98.3 93.1, 95.9, 86.7 73.8, 72.1, 62.3 91.3, 96.5, 82.9 92.4, 97.8, 84.6
6 97.3, 97.4, 97.4 98.1, 98.4, 97.9 62.6, 50.0, 68.3 97.8, 96.8, 98.9 97.8, 98.9, 96.9
7 98.0, 95.4, 98.3 96.9, 98.0, 93.3 77.1, 73.3, 63.1 93.6, 98.5, 85.4 93.8, 99.0, 85.4
8 98.9, 98.4, 99.2 98.6, 99.2, 97.7 55.5, 29.1, 50.7 98.9, 97.6, 100 98.6, 96.9, 100
9 95.8, 87.0, 97.7 96.0, 88.4, 96.7 83.5, 44.2, 93.3 96.0, 88.0, 97.4 96.0, 87.8, 97.7
10 94.6, 97.5, 93.5 92.9, 95.7, 92.4 70.0, 94.8, 67.5 93.6, 97.5, 92.2 96.8, 99.0, 95.7
Mean 96.3, 89.9, 97.8 94.4, 90.3, 91.3 77.9, 62.4, 75.8 94.7, 90.1, 93.2 94.9, 91.5, 92.4
±SD ±1.6,±7.6,±1.7 ±2.8,±7.9,±5.3 ±12, ±18, ±15 ±2.3,±7.9,±5.6 ±2.2,±7.4,±5.2

The experimental results are reported in Tables 1.2 and 1.3. From Table 1.2,
we can see that the RR for fluoroscopic sequences 1, 2, 3, 4 and 9 is markedly
lower than the other sequences for most dimensionality reduction techniques (except
LTSA, whose average RR is much lower than others). A similar pattern may also
be observed for SVM-based results in table 1.3. A low RR indicates a large number
of false negatives compared with true positives, meaning that the radiation beam
will be turned off more frequently when it should be on, leading to a prolonged
treatment. From this perspective, we point out that the three evaluation metrics used
here are not equally important in clinical sense. A false positive gating signal is
much worse clinically than a false negative one. Therefore, when comparing with



1.4 Experimental Results 15

Table 1.3 Performance of SVM classification combined with various dimensionality reduction
techniques. Three numbers in each cell represent the classification accuracy (CA), the recall rate
(RR), and the target coverage (TC) in percentage.

Data PCA LLE LTSA LAP DMAP

1 92.6, 74.6, 97.9 92.0, 71.9, 97.3 87.9, 56.8, 97.0 87.6, 64.7, 89.2 90.9, 76.9, 91.5
2 94.5, 78.0, 99.1 91.4, 68.1, 95.8 89.0, 60.3, 94.2 87.3, 62.5, 86.3 93.7, 76.5, 97.5
3 94.4, 78.9, 97.8 91.9, 71.1, 95.1 88.7, 57.2, 96.1 89.0, 60.0, 94.2 94.0, 81.6, 94.6
4 94.0, 77.0, 98.3 91.5, 67.9, 96.1 88.2, 54.8, 96.6 88.5, 61.8, 92.4 93.1, 75.0, 96.9
5 97.0, 94.4, 97.3 94.5, 93.4, 92.6 88.1, 80.1, 88.0 89.8, 95.6, 82.4 94.3, 94.6, 91.6
6 96.7, 92.4, 99.1 86.9, 66.8, 98.7 76.8, 41.6, 96.6 96.6, 92.1, 99.0 93.1, 82.9, 99.0
7 92.2, 77.2, 98.4 95.0, 89.5, 94.9 90.9, 89.4, 84.5 93.7, 94.4, 89.1 96.4, 90.8, 98.2
8 96.8, 93.9, 97.0 95.6, 90.4, 97.0 78.0, 40.9, 93.7 96.7, 93.2, 97.3 96.3, 92.2, 97.0
9 94.7, 84.2, 96.4 95.6, 89.0, 95.1 89.9, 69.1, 92.8 95.0, 83.6, 98.3 92.6, 75.5, 97.0
10 96.5, 98.4, 95.8 95.2, 97.8, 94.3 78.1, 90.3, 76.6 92.8, 96.8, 91.4 96.4, 99.2, 95.0
Mean 94.9, 84.9, 97.7 93.0, 80.6, 95.7 85.6, 64.1, 91.6 91.7, 80.5, 92.0 94.1, 84.5, 95.8
±SD ±1.7,±9.0,±1.1 ±2.8,±12,±1.7 ±5.6,±18±6.7 ±3.7,±16±5.4 ±1.8,±9.0,±2.6

two results, TC should be given more weight than RR. It is encouraging to see that
in most cases TC is often larger than 90% although RR seldom reaches 90%.

The reason for a lower RR is very complicated. It might be the situation that
the tumor cannot be seen clearly in the fluoroscopic images and the ’ground truth’
itself is not accurate. There might exist shape and size changes in the tumor as
well as interfering movements of other organs (particularly heart) during simulated
treatment. These variations will be captured by PCA even if the tumor is in the
same location. Another potential issue is the increase of breathing amplitude during
simulated treatment over that of the training set. Since these new images are not
represented in the training set, they might be mapped incorrectly in the PCA
subspace.

From table 1.2, the average CA and TC values of the ANN and PCA combination
are greater than other combinations with the smallest standard deviation although
the RR for PCA with ANN is slightly lower than several other manifold learning
methods with ANN. Similarly, we can see from table 1.3 that the SVM and PCA
combination performs better than other combinations too. This suggests that for the
gating problem, a linear projection of the data using PCA might suffice for a good
classification result with ANN or SVM.

Comparing table 1.2 with table 1.3, we can see that when PCA is used for
dimensionality reduction, there is a slight advantage of using ANN over SVM in
all the three evaluation metrics. In order to quantitatively assess the performance
gain (if any) of ANN over SVM when used with PCA, we performed a one-side
paired t-test on three evaluation metrics for the ten fluoroscopic sequences. The
reason why we used this particular t-test is that we are suspecting that ANN is better
than SVM (hence one-side) and there is a one-to-one correspondence between each
entry in tables 1.2 and 1.3 since they came from the same sequence in the same
patient (hence paired). We rejected the null hypothesis for CA and RR under the
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0.05 significance level (p-value: 0.024 and 0.006, respectively). This means that
the gain of ANN over SVM in terms of CA and RR is statistically significant.
However, we cannot reject the null hypothesis for TC (p-value: 0.405). Combining
these results with those of Cui et al. [7], we can say that ANN with PCA is better
than the template-based approach in terms of TC and RR (or DC).

Another important issue for real-time applications is the computational cost (or
latency) in the system. Training an ANN is more efficient than training SVM since
SVM needs a brute force search for the best combination of two parameters. The
running time of training ANN ten times is about 0.1521 second on an Intel Core 2
Duo 2.66 GHz Machine, while it takes 2.6332 second on training SVM to search the
best parameters and learn the SVM decision boundary. However, since the training
process is done before treatment and only needs to be done once, the training time
may be of secondary concern. What is more relevant here is the running time in
the testing phase. For this particular data set, we estimated that the average running
time for ANN in combination with PCA is about 6.7 ms for each frame. For SVM
combined with PCA, it takes about 11 ms to process each frame. This is consistent
with the previous literature in that SVM in general is slower in terms of running
time than ANN for a similar generalization performance [10]. One of the reasons is
that there is no control over the number of data samples selected by SVM for use as
support vectors (during testing, the running time of SVM grows linearly with respect
to the number of support vectors). This is in contrast to ANN, which has fixed
computational complexity once a network architecture is selected. In this respect,
ANN is more appealing than SVM for this application. At this stage, it seems that
the system latency for both ANN and SVM when combined with PCA is acceptable
for realtime gated radiotherapy.

1.4.2 Results on Tumor Tracking

We compare four regression methods for the tumor tracking scenario. Figure 1.10
shows a tracking example for Patient 1. We can see that all four methods perform
better on the first 225 frames of training data than on the remaining testing data.
The two-degree linear regression may suffer from the overfitting problem, as the
tracking errors for the testing data are much higher than that of the training data. In
contrast, we compute the mean tracking errors, ē and the maximum tracking error
at a 95% confidence level, e95. Table 1.4 summarizes the tracking results of four
regression methods on 10 fluoroscopic videos. We can see that the performance
of all four regression methods is about on the same level, with ANN regression
performing slightly better than others at ē = 2.1 pixels and e95 = 4.6 pixels(the pixel
size is about 0.5 mm). It is worth noticing that ANN is also more robust than other
methods, with the maximum e95 of 6.5 pixels, while for the other three methods the
maximum e95 at least doubles this value.

We observed the time performance of our algorithm. For this study, three ROIs
were selected with a total of 9794 pixels. The average time needed to project the
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Fig. 1.10 Tracking results of four regression methods for patient 1. (x,y) are the ground truth 2D
position of the tumor center, and (u,v) are the predicted results for (x,y).

Table 1.4 Tracking results for the four regression methods. ē is the mean localization error, and
e95 is the maximum localization error at a 95% confidence level. Pixel size is 0.486 mm for patients
2, 8 and 10, and 0.518 mm for the rest.

One-degree Two-degree ANN SVM
Moving range linear regression linear regression regression regression

Patient (x, y) in pixels ē, e95 ē, e95 ē, e95 ē, e95

1 10, 25 1.7, 3.2 1.8, 3.9 1.9, 3.4 1.8, 3.6
2 7, 28 1.9, 3.7 1.9, 4.5 1.3, 2.9 1.7, 3.9
3 9, 29 2.4, 5.5 2.4, 7.2 2.3, 6.2 2.2, 5.8
4 25, 41 6.0,12.9 6.1,14.2 4.0, 6.5 6.9,11.6
5 8, 28 1.4, 2.9 1.4, 3.4 1.7, 4.5 1.2, 2.5
6 11, 32 1.5, 3.2 1.2, 2.6 2.3, 4.5 0.9, 2.0
7 12, 37 1.6, 3.2 1.7, 3.9 1.8, 3.8 1.4, 3.0
8 10, 38 1.4, 2.8 1.6, 4.1 2.4, 5.7 1.5, 3.3
9 8, 24 1.5, 3.1 1.3, 2.6 1.3, 3.1 1.4, 2.7
10 11, 51 2.5, 6.8 2.6, 7.6 2.3, 5.8 2.8,13.8
Average 11.1, 33.3 2.2, 4.7 2.2, 5.4 2.1, 4.6 2.2, 5.2

ROIs onto the PCA space and to obtain the tumor position was 8.2ms in a PC with
1.80GHz CPU and 1.97GB of RAM. The time required to find the estimated tumor
position in a new acquired image is in the same order of magnitude as the time
achieved by Moser et al (2008) [21] of 6.4ms, which is short enough for the purpose
of real-time tracking.
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1.5 Discussions

1.5.1 Summary of Our Work

In the tumor gating work, the gating problem was reformulated as a binary clas-
sification problem. Five dimensionality reduction techniques and two machine
learning classification approaches were investigated. We found that PCA is in
general superior compared to the other four nonlinear manifold learning methods for
our application, suggesting that our data might lie in a (roughly) linear space. PCA
combined with ANN leads to more accurate results in terms of CA, RR than SVM
although TC is similar for both methods. In particular, for the clinically meaningful
performance measure, we can achieve an upper 90% TC for most sequences in our
data set. When combined with PCA, both ANN and SVM give a system latency
acceptible for real-time applications. Therefore, for future real-time gated lung
radiotherapy in clinics, we recommend PCA combined with ANN.

In the tumor tracking work, we have proposed a novel tracking algorithm without
implanted fiducial markers. Commonly three surrogate ROIs are selected, and then
the correlation between the tumor position and the surrogate representations can be
captured by regression analysis techniques. Four regression methods were tested in
this study: linear and two-degree polynomial regression, artificial neural network
(ANN), and support vector machine (SVM). The experimental results based on
fluoroscopic sequences of ten lung cancer patients demonstrate a mean track-ing
error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels
(pixel size is about 0.5 mm) for the proposed tracking algorithm. Experimental
results demonstrated the feasibility of the proposed tracking algorithm, which can
be clinically promising for respiratory gating or beam tracking in the future.

1.5.2 Limits of Our Work

For markerless tumor gating, to overcome the potential problems mentioned in the
previous sections, we may need to resort to fluoroscopic images with implanted
markers to get more accurate ground truth in the future. In some cases, using a
smaller ROI may reduce the amount of interfering movements of other organs and
increase classification accuracy. Some preprocessing such as low pass filtering may
help reduce the effects of background noise. In general, the issue of shape and size
changes in the tumor as well as irregular breathing patterns is more difficult to
deal with. It is obvious that PCA is sensitive to these changes since it is an area-
based approach and works directly with image intensity values. One solution is to
investigate other feature extraction techniques or special-purpose image processing
algorithms to overcome this problem.

As to the tumor tracking study, the results presented above indicate great promise
for the development of algorithms that can track lung tumors in real time and in a
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non-invasive way with high accuracy. Nevertheless, the achievement of these goals
requires a number of further improvements. First, the current work can be expanded
to design regression functions capable of taking the smoothness of PCA trajectories
(rather than single point locations) into account for the prediction of tumor positions.
Second, surrogate ROIs should be selected automatically in an optimal way. Right
now, we empirically selected three surrogate ROIs. There is no guarantee that the
manually selected surrogates are the best ones for a particular patient, in terms
of their predictive power with respect to the tumor position. Since the motion of
surrogate features is used to predict tumor motion, the quality of tumor tracking is
very likely to be improved if the ROIs are carefully selected.

There is also a need to determine the number of surrogates on which to base the
prediction. We have used three ROIs in this work. There is, however, no reason to
believe that this is the optimal number of surrogates. In contrast, as is well known
in statistics, improved predictions can typically be obtained with recourse to the
law of large numbers, by taking averages over large numbers of measurements. In
the context of fluoroscopic image tracking, this advises the adoption of regression
functions based on a large number of surrogate ROIs. However, the amount of
training data required to estimate the regression function grows exponentially with
the number of variables of the regression problem. This number is the product of
the number of surrogate ROIs with the number of PCA coefficients per ROI. When
too large a number of ROIs are used, the training requirements become practically
infeasible. This implies that there is a trade-off between the pre-diction accuracy
and dimensionality problem. Finding the optimal value for this trade-off requires
a careful selection of both the number of surrogates and the number of coefficients
per surrogate. We have, so far avoided dimensionality problems by resorting to three
surrogates and three PCA coefficients. Once again, there is no reason to believe that
those are optimal numbers which will lead to the best possible predictions. A better
strategy is to rely on statistical learning techniques to determine which coefficients
are most informative for the prediction, and limit the regression problem to these.

The technique presented here finds the regression between tumor and surrogate
representation based on knowledge of the tumor position ground truth of the training
set. The clinical implementation of this method has to be well thought in order to
reduce treatment time. The regression could potentially be performed before the
first treatment from a fluoroscopic sequence uniquely acquired for this purpose.
However, PCA is sensitive to the tumor size and position, so if the tumor changes
size or relative position with respect to the chosen surrogates, this regression needs
to be re-calculated.

One may note that all the image sequences used in the tracking work are only
from anteriorCposterior (AP) views. This is because tumors in images from other
views, such as lateral view, are often much more difficult to identify even by expert
observers. Thus for those images it is impossible to develop ground truth to test the
developed algorithm.

Finally one should observe that due to the nature of fluoroscopic images, only
2D information of the tumor position can be extracted from them. Although superi-
orCinferior motion is normally the largest one among all directions of motions, the
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overlooking of other directions of motions will degrade the accuracy of radiothera-
py. In order to achieve complete 3D tracking, either a good correlation between the
third coordinate and the planar image is obtained, for example from a 4D-CT scan
of the patient, or another imaging method is used for the third coordinate.

1.5.3 Follow-up Work by Other Authors

The markerless gating and tracking methods described in this chapter were pub-
lished in 2009 [20] [19]. Since then, many follow-up studies have been conducted
in order to improve the accuracy and the running time; we review some significant
advancements here since our publications.

Our work shows that the gating problem can be reformulated as a binary clas-
sification problem and using classifiers can generate marginally better results than
template matching methods. In [16] Li et al. pointed out that classification-based
methods usually require a training image set marked manually in each fluoroscopic
template, which seems to be impractical to manually mark the tumor position in each
image frame in a clinical setting. Thus Li et al. proposed a new and clinically more
practical method based on template matching, where the templates are prepared
from four-dimensional computed tomography (4DCT) at the stage of treatment
planning. On the other hand, Li et al. also provided a new dimension reduction
method to tumor gating called generalized linear discriminant analysis (GLDA),
which explicitly takes the label information available in the training set into account
[17].

Lewis et al. noticed several main challenges when applying our tracking method
[15]. First, fluoroscopic image data should be acquired prior to treatment, and a
clinician is needed to mark the tumor positions on the images for model training.
Second, a training data set of fluoroscopic images must be acquired for each beam
angle from which the tumor will be tracked. If the beam angle is changed, we need
to prepare the new training data set for this specific beam angle. Third, tumors are
often difficult to observe on fluoroscopic images, implying that purely dependence
on fluoroscopic images might be clinically infeasible for some cases. To address
these dificulties, Lewis et al. proposed an algorithm for direct tumor tracking in
rotational cone-beam projections.

Rottmann et al. developed an algorithm that directly uses the on-board portal
imaging device of the treatment machine for tracking lung tumors, which greatly
reduce the additional dose exposed to the patients [30]. Interestingly he gave
the following comments: ”The classification approach lacks the ability to adapt
to changes in the breathing pattern that cannot be described with the motion
observed during the training session (extrapolation). However, it works well for
the application of gated treatment, where it is not necessary to know the precise
location, but rather to decide whether the target is within a predefined region.
To his comments we would like to mention that regression methods (rather than
classification) are employed in our tracking system. We actually know little about
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the extrapolation capability of our tracking method when new motion patterns occur
in the test data set rather than in the training set. But regression methods commonly
have certain degrees of extrapolation capability to partially handle this scenario.
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