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Abstract

We present a new manifold learning algorithm called
Local Orthogonality Preserving Alignment (LOPA).
Our algorithm is inspired by the Local Tangent Space
Alignment (LTSA) method that aims to align multiple
local neighborhoods into a global coordinate system
using affine transformations. However, LTSA often
fails to preserve original geometric quantities such as
distances and angles. Although an iterative alignment
procedure for preserving orthogonality was suggested
by the authors of LTSA, neither the corresponding
initialization nor the experiments were given. Pro-
crustes Subspaces Alignment (PSA) implements the or-
thogonality preserving idea by estimating each rotation
transformation separately with simulated annealing.
However, the optimization in PSA is complicated and
multiple separated local rotations may produce globally
contradictive results. To address these difficulties, we
first use the pseudo-inverse trick of LTSA to represent
each local orthogonal transformations with the unified
global coordinates. Then the orthogonality constraints
are relaxed to be an instance of semidefinite program-
ming (SDP). Finally a two-step iterative procedure is
employed to further reduce the errors in orthogonal
constraints. Extensive experiments show that LOPA can
faithfully preserve distances, angles, inner products, and
neighborhoods of the original data sets. In comparison,
the embedding performance of LOPA is better than PSA
and comparable to state-of-the-art algorithms like MVU
and MVE, while the complexity of LOPA is significantly
lower than other competing methods.

1. Introduction

Manifold learning is a large class of nonlinear dimen-
sionality reduction methods operated in an unsupervised
manner, with each method attempting to preserve a
particular geometric quantity such as distances, angles,
proximity, or local patches. Since the two pioneering

work published on Scinece in 2000, Isomap [19] and LLE
[14, 15], manifold learning [16] has been a significant topic
in data visualization and pattern classification. Today the
huge amount of data from imaging devices, bioinformatics,
and financial applications are usually high-dimensional,
thus there is an imperative need to overcome the ”curse of
dimensionality” [3]. A direct solution is the dimensionality
reduction approach that transforms the high-dimensional
data into a low-dimensional embedding space. However,
traditional methods like PCA or MDS fail to discover
nonlinear or curved structures of the input data. In contrast,
manifold learning methods are suitable for unfolding the
nonlinear structures into a flat low dimensional embedding
space. Therefore, these methods have found a wide
variety of applications, for instance, microarray gene
expression, 3D body pose recovery, face recognition and
facial expression transferring. See [11] for some recent
applications based on manifold alignment.

According to the methodology in [26], existing manifold
learning methods can be roughly divided into three
categories: (1) distance-preserving methods, including
Isomap [19], MVU [22, 23], MVE [18], and RML [9]; (2)
angle-preserving methods, e.g. conformal eigenmaps [17];
and (3) proximity-preserving methods, such as LLE [14,
15], HLLE [4], Laplacian eigenmaps (LE) [1], LTSA [27],
and NPPE [13], which align local weights or neighborhood
for each data point into a global coordinates space. Due
to recent advancement, here we point out that there exists
the fourth category: (4) patch-preserving methods, such
as LMDS [25], and MLE [21], which align each linear
patch of moderate size with other patches in order to
construct the global representation. In addition, several
special methods occurred to be seemingly excluded by the
four main categories, such as manifold sculpting [5] and
NeRV [20].

Most previous manifold learning methods focus on
one particular perspective in order to preserve a single
geometric quantity. In this way, for instance, a proximity-
preserving method often performs poorly if viewed from
other perspectives such as maintaining distances and angles.
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[6] addressed the following basic question: how do we
define a faithful embedding that preserves the local structure
of neighborhoods on the manifold? In other words, can we
find some fundamental clues to handle distances, angles,
and neighborhoods in a comprehensive way? Their answer
is the Procrustes measure, which computes the distance
between two configurations of points after one of the
configuration is rotated and translated to best match the
other. As the translation vector can be omitted by centering
each point set, the computation of Procrustes measure
boils down to finding the best rotation (orthogonal) matrix.
Then they proposed two algorithms, greedy Procrustes (GP)
and Procrustes subspaces alignment (PSA), to minimize
the suggested measure. GP is a progressive method that
relies on the selection of a basis point and the embeddings
produced by GP may not maintain the global structure of
the input data (e.g. the cylinder data of Fig. 3 in [6]).
On the other hand, PSA performs the global embedding
by finding each local orthogonal transformation separately
with complicated simulated annealing (SA) and then
aligning multiple local PCA subspaces together. However,
there is a risk that these local orthogonal transformations
may produce an incompatible global embedding since each
orthogonal transformation is estimated separately.

We agree with [6] that the Procrustes measure is one
reasonable clue to be preserved in manifold learning. To
circumvent the difficulties in PSA, in this paper we propose
a new algorithm called Local Orthogonality Preserving
Alignment (LOPA). Comparison results on synthetic and
real data sets demonstrate the good performance of our
algorithm.

The rest of the paper is organized as follows. We first
discuss some criteria in manifold learning and describe our
models in Section 2. Section 3 is devoted to numerically
solve the proposed optimization problem, and experimental
results are presented in Section 4.

2. Criteria and Models

Generally there are two ways to handle multiple geo-
metric quantities in a comprehensive manner for manifold
learning. The first one is to preserve the Riemannian
metrics, a fundamental notion in Riemannian geometry [2],
that determine inner products on tangent spaces at every
point. The work by [12] was the first attempt to use
Riemannian metrics as a criterion in manifold learning.
They provided an algorithm to augment the output of any
embedding methods with Riemannian metrics estimated
by the Laplace-Beltrami operator; however, they did not
develop any new manifold learning algorithm to preserve
Riemannian metrics. Here we present a simple model to
directly preserve inner products in each neighborhood, and
show the inherent difficulties in its optimization.

Given a data set X = [x1, . . . , xN ] ∈ Rm×N with

each data point xi is a m-dimensional column vector, and
the goal of dimensionality reduction is to transform X to
Y = [y1, . . . , yN ] ∈ Rd×N (d << m). For each data point
xi, we denoteXi = [xi1 , . . . , xik ] as its k nearest neighbors
(including itself by setting xi1 = xi), and the neighborhood
indices are represented as Ωi = [i1, . . . , ik]. A direct model
to preserve inner products in each neighborhood can be
formulated as the following problem to find the optimal Y :

N∑
i=1

∑
j, l ∈ Ωi,
j, l 6= i

(
〈yj−yi, yl−yi〉−〈xj−xi, xl−xi〉

)2
. (1)

A similar formula occurred in MVU [22, 23], but an equiv-
alent formulation of local isometry, i.e. preserving pairwise
distances, is used in the final MVU implementation. We
show that the minimization of (1) leads to a standard least
squares (LS) problem:

(1) =

N∑
i=1

‖HT
k S

T
i Y

TY SiHk −HT
k S

T
i X

TXSiHk‖2F

=

N∑
i=1

‖QT
i ZQi −Wi‖2F =

N∑
i=1

‖Aiz − wi‖2

= ‖Az − w‖2,

where Hk
.
= I − eeT /k is a centering matrix of size k-

by-k, I (or Ik) is an identity matrix (of size k-by-k), e is
a column vector of all ones (in a proper dimension), Si is
a 0-1 selection matrix for Xi, Qi

.
= SiHk, Z .

= Y TY ,
Wi

.
= HT

k S
T
i X

TXSiHk can be computed before hand,
z
.
= vec(Z) and wi

.
= vec(Wi) with the operator vec(A)

stacking the columns of A into a long column vector, and
A and w are formed by stacking all Ai and wi together.
Note that we use the well-known equality vec(AXB) =
(BT ⊗ A)vec(X) in the step obtaining z from Z, where ⊗
denotes the Kronecker product.

However, this LS problem is rank deficient in solving
a N2-dimensional vector z with only Nk2 equations, thus
having an infinite number of solutions in most cases such
that k2 << N . As rank(Y ) = d for common cases when
d < N , the result Y obtained by eigen-decomposition of
Z = Y TY is usually a poor embedding. One remedy is
to explicitly incorporate the rank constraint of Y into the
LS problem. But the fixed rank or low rank LS problem
poses great challenges for finding reasonable embeddings
for high dimensional data sets. Furthermore, the huge sizes
of A ∈ RNk2×N2

and w ∈ RNk2×1 can be problematic in
storage even for a small data set. For instance, the number
of matrix entries inA is 64 billions ifN = 1024 and k = 8.

Notice that the complexity of above inner product model
(1) essentially comes from the quadratic term Y TY ∈



RN×N in the inner product representation. In order to
reduce the complexity, we resort to an alternative way based
on local alignments preserving orthogonality (or isometry).
The Local Tangent Space Alignment (LTSA) method
[27] provides an elegant framework for neighborhood
alignments:

min
Y,{Li}

N∑
i=1

‖Y SiHk − LiΘi‖2F , (2)

where Θi ∈ Rd×k is the d-dimensional PCA coordinates
for Xi, Li ∈ Rd×d is a local affine transformation, and
F denotes the matrix Frobenius norm. The cost function
of (2) is then one order about Y (rather than Y TY in
the above inner product model). Then using a pseudo-
inverse trick, for fixed Y the optimal affine transformation
can be represented as Li = Y SiHkΘ†i where Θ†i is the
Moore-Penrose generalized inverse of Θi. Hence the cost
function of (2) can be formulated as tr(Y BY T ), where
B

.
=

∑N
i=1 SiHk(I − Θ†iΘi)(I − Θ†iΘi)

THT
k S

T
i ∈

RN×N (see the derivations in [27]). Finally, by imposing
the unit covariance constraint Y Y T = Id, the LTSA
algorithm obtains the optimal Y given by the eigenvectors
corresponding to the d smallest positive eigenvalues of B.
However, general linear transformations can not preserve
local geometric quantities such as distances and angles.

A nature extension is to restrict the linear transformation-
s Li in the set of orthogonal matrices, leading to our LOPA
model:

minY,{Li}

N∑
i=1

‖Y SiHk − LiΘi‖2F ,

s.t. LiL
T
i = Id, i = 1, . . . , N. (3)

The LOPA model (3) is similar to PSA, except that PSA
directly aligns the low-dimensional embedding with the
input data X (without the use of PCA projection). Again
using the pseudo-inverse trick to represent Li, the LOPA
model can be rewritten as

minY tr(Y BY T ),

s.t. Y CiY
T = Id, i = 1, . . . , N (4)

where Ci
.
= GiG

T
i ∈ RN×N with Gi

.
= SiHkΘ†i ∈

RN×d. An earlier work of the ONPP [8] method shares
a similar idea:

minY tr(YMY T ),

s.t. Y = V TX,V TV = Id,

where M ∈ RN×N is a known matrix, and Y is obtained
by an orthogonal transformation ofX . However, ONPP has
only one orthogonality constraint and is a linear projection.

3. Optimizations

3.1. Orthogonality constraint problems

The LOPA model (4) is a minimization problem with
multiple matrix orthogonality constraints. Minimization
with orthogonality constraints [24] plays an important role
in many applications of science and engineering, such
as polynomial optimization, combinatorial optimization,
eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit
compressive sensing, matrix rank minimization, etc. See
[24] for descriptions of some recent applications. Three
types of problems are considered in [24]:

min
X
F(X), s.t. XTX = I,

min
X
F(X), s.t. XTMX = K,

min
X1,...,Xq

F(X1, . . . , Xq), s.t.XT
i MiXi = Ki, i = 1, . . . , q

where F is a known differentiable function, M , Mi, and
Ki are given positive definite and nonsingular symmetric
matrices. It is generally difficult to solve these problems
because the orthogonality constraints can lead to many local
minimizers and several type of these problems are NP-
hard. No guarantee can be made for obtaining the global
minimizer, except for a few simple cases such as finding the
extreme eigenvalues.

Generally the approaches to solve orthogonality con-
straint problems can be roughly classified into two
categories [24]: (1) feasible methods that strictly satisfy
the orthogonality constraints during iterations, including
matrix re-orthogonalization and generating trial points
along geodesics; (2) and infeasible methods that relax the
constraints by penalizing their violations and thus generate
infeasible intermediate points, such as various penalty,
augmented Lagrangian, and SDP relaxation methods.

In this paper the LOPA model (4) is solved by an
infeasible method, since the strict orthogonality constraints
are rarely satisfied except for a few intrinsically flat data set
with zero Gaussian curvature everywhere, such as the Swiss
role data. Specifically the SDP relaxation method is used to
solve the LOPA problem, with details given in the following
subsection.

3.2. Relaxation models for LOPA

A most straightforward way to simplify (4) is to
replace the multiple constraints with just a single combined
constraint Y CY T = Id, where C =

∑N
i=1 Ci/N . This

simplification can be derived from the Lagrangian function

L(Y, {Wi}) = tr(Y BY T )− 1

N

N∑
i=1

tr
(
Wi(Y CiY

T−Id)
)
,



where each Wi is a Lagrangian multiplier matrix. If
assuming all the multiplier matrices are identical asW , then
the penalization term can be written as

tr
(
W (Y (

1

N

N∑
i=1

Ci)Y
T − Id)

)
.

Thus we can obtain an overly simplified model:

min
Y

tr(Y BY T ), s.t. Y CY T = Id. (5)

If considering each dimension of Y , then the optimal Y
is simply given by the eigenvectors corresponding to the
d smallest positive generalized eigenvalues of (B,C +
δIN ). Here δIN is a small regularization term to avoid
singularity. However, this overly simplified model is
not amenable to embedding curved manifold data, though
yielding satisfactory results on intrinsically flat data like
Swiss roll.

A more practical way is to replace the difficult
orthogonal constraints by easier trace constraints, leading
to the following relaxation model:

min
Y

tr(Y BY T ), s.t.tr(Y CiY
T ) = d, i = 1, . . . , N. (6)

Compared with the rigid orthogonality constraint
Y CiY

T = Id, the trace constraint tr(Y CiY
T ) = d at each

data point only loosely specifies the sum of the diagonals
of Y CiY

T . By setting K
.
= Y TY and using the trace

property tr(ABC) = tr(BCA) = tr(CAB), the model
(6) can be rewritten as

minK tr(BK),

s.t. K � 0, tr(CiK) = d, i = 1, . . . , N, (7)

whereK � 0 shows it is a positive semidefinite matrix with
rank d by its definition.

3.3. Connection to MVU

It is interesting to connect the LOPA model (7) with the
MVU model [22, 23] given by:

maxY tr(K),

s.t. K � 0, tr(eeTK) = 0,

Kii − 2Kij +Kjj = Dij , j ∈ Ωi, (8)

where Dij
.
= ‖xi − xj‖2 is the squared distance between

two neighbors (xi and xj). The last constraint in (8) is just
‖yi− yj‖2 = Dij represented by K, showing that the main
purpose of MVU is to preserve distances between neighbor
points. The second constraint enforces that the embeddings
of all data points should be centered on the origin:∑

i

yi = 0 ⇒
∑
ij

yTi yj = 0⇒ Y e = 0

⇒ tr(eTY TY e) = 0⇒ tr(eeTK) = 0.

The objective function of MVU is derived as followings:

tr(K) = tr(Y TY ) =
∑
i

‖yi‖2

=
1

2N

∑
ij

(‖yi‖2 + ‖yj‖2 − 2yTi yj)

=
1

2N

∑
ij

‖yi − yj‖2,

where the zero mean constraint is used in the third equality.
Therefore, it is clear that MVU attempts to unfold the
curved manifold by maximizing the averaged squared
distance between any two embedding points (need not
to be k-nearest neighbors) under the distance preserving
constraint, thus getting its algorithmic name.

We can see that the objective function max tr(K) =
min−tr(IK) of MVU (8) is similar to min tr(BK) of
LOPA (7). However, there are approximately Nk/2
constraints of pairwise distances in the MVU model. In
contrast, LOPA (7) has only N constraints, thus having
lower complexity than MVU.

3.4. Solution to LOPA

It is well known that the LOPA model (7) is a standard
formulation of semi-definite programming (SDP) and the
optimal K can be solved by any off-the-shelf convex
optimization toolbox like sdpt3, csdp, and sedumi. In
general the obtained K may not satisfying the rank d
constraint coming from the definition K = Y TY . Then
by eigen-decomposition of K we get an initial solution
of the embeddings, Y0 = V D

1
2 , where D and V are the

top d eigenvalue diagonal matrix and the corresponding
eigenvectors of K, respectively. Here D

1
2 denotes the

diagonal matrix formed by the square roots of the top d
eigenvalues.

Recall that we only solved the relaxation version (7)
to approximate the original LOPA problem (4). Starting
from the initial SDP solution Y0, it is usually possible to
find better Y such that both the cost function tr(Y BY T )
and the penalty terms ‖Y CiY

T − Id‖2F can be further
decreased. Here we directly use the two-step iterative
procedure suggested by the Appendix of [27]:

1. For fixed Y , solve minLi
‖Y SiHk−LiΘi‖2F to obtain

an optimal orthogonal transformation Li for each xi.
This is the standard orthogonal Procrustes problem
(See Algorithm 12.4.1 of [7]), with solution Li =
UiV

T
i where Y SiHkΘT

i = UiΣiV
T
i is the singular

value decomposition (SVD).

2. For the fixed {Li}, i = 1, . . . , N , solve the least
squares (LS) problem minY

∑
i ‖Y SiHk − LiΘi‖2F

to update Y .



Figure 1. 3D to 2D results on synthetic data. From top to bottom: Swiss roll, Swiss hole, punctured sphere, twin peaks, and toroidal helix.

Table 1. Rkdist.

DATASET σ LLE LTSA ISOMAP PSA MVU MVE LOPA
SWISS 0 99.53% 100.00% 48.14% 18.13% 4.22% 1.67% 0.42%
ROLL 0.03 99.00% 100.00% 44.98% 16.54% 8.98% 6.14% 1.09%
SWISS 0 99.45% 100.00% 41.81% 18.42% 3.84% 1.64% 0.42%
HOLE 0.03 99.08% 100.00% 38.95% 19.49% 8.77% 10.09% 0.94%
PUNCTURED 0 80.91% 99.83% 79.93% 53.59% 44.70% 32.15% 24.06%
SPHERE 0.03 80.80% 99.83% 79.87% 57.70% 44.64% 32.26% 23.72%
TWIN 0 185.82% 99.83% 32.76% 25.62% 27.53% 34.38% 9.94%
PEAKS 0.03 53.81% 99.85% 36.33% 21.67% 26.86% 28.19% 10.29%
TOROIDAL 0 97.07% 99.77% 99.62% 14.92% 1.13% 0.18% 0.65%
HELIX 0.03 97.07% 99.77% 99.49% 8.74% 1.16% 0.22% 0.67%

3. Repeat the above two steps until ‖Y (t+1) −
Y (t)‖F /‖Y (t)‖F ≤ ε, or t ≥ tmax.

4. Experiments

We compare our algorithm with other dimensionality
reduction method, including PCA, LLE, LTSA, Isomap,
PSA, MVU, and MVE. Aside from showing results on
synthetic data, we also show visualization results on pose
varying data and motion sequence. Moreover classification
performance is evaluated on low-dimensional embeddings
of five diverse data sets.

To produce a quantitative evaluation, we introduce four
averaged measures reflecting geometric changes before and
after the embedding in each neighborhood. These measures
are relative errors in distances, relative errors in angles,

relative errors in inner products among any three neighbors,
and change rates in k-nearest neighborhood:

Rkdist =

∑N
i=1

∑k
j=2 |(xij − xi)2 − (yij − yi)2|∑N
i=1

∑k
j=2(xij − xi)2

,

Rkangl =

∑N
i=1

∑k
j=3 |∠xijxixi2 − ∠yijyiyi2 |∑N
i=1

∑k
j=3 |∠xijxixi2 |

,

Rkinner =

∑N
i=1

∑k
j=2 | < xij , xi > − < yij , yi > |∑N
i=1

∑k
j=2 | < xij , xi > |

,

Rknn =
1

kN

N∑
i=1

(k − |Ω(xi) ∩ Ω(yi)|).



Table 2. Rkangl.

DATASET σ LLE LTSA ISOMAP PSA MVU MVE LOPA
SWISS 0 51.27% 34.98% 20.60% 11.23% 0.64% 0.45% 0.41%
ROLL 0.03 48.04% 37.86% 21.35% 10.08% 4.28% 4.35% 4.14%
SWISS 0 38.83% 35.16% 27.20% 10.18% 0.67% 0.50% 0.44%
HOLE 0.03 34.45% 36.70% 31.32% 13.06% 4.75% 4.95% 4.17%
PUNCTURED 0 9.74% 43.75% 25.87% 32.27% 23.60% 20.52% 7.94%
SPHERE 0.03 9.76% 43.75% 25.99% 45.45% 23.38% 20.67% 8.94%
TWIN 0 29.53% 11.88% 21.17% 16.98% 18.39% 8.77% 6.50%
PEAKS 0.03 14.41% 14.94% 22.84% 11.98% 15.70% 9.99% 5.92%
TOROIDAL 0 4.36% 0.06% 4.36% 2.55% 3.49% 4.36% 3.08%
HELIX 0.03 4.33% 0.24% 4.33% 1.74% 2.94% 3.74% 3.23%

Table 3. Rkinner.

DATASET σ LLE LTSA ISOMAP PSA MVU MVE LOPA
SWISS 0 99.53% 100.00% 64.00% 29.26% 4.24% 1.61% 0.57%
ROLL 0.03 98.92% 100.00% 55.58% 26.08% 8.79% 7.06% 2.30%
SWISS 0 99.46% 100.00% 66.48% 30.01% 3.76% 1.55% 0.55%
HOLE 0.03 99.07% 100.00% 62.94% 30.66% 8.36% 9.47% 2.05%
PUNCTURED 0 82.83% 99.88% 95.71% 69.04% 89.09% 65.82% 34.76%
SPHERE 0.03 82.85% 99.88% 96.05% 54.11% 88.77% 65.72% 34.73%
TWIN 0 251.56% 99.83% 50.12% 42.73% 34.67% 34.05% 16.24%
PEAKS 0.03 70.63% 99.84% 53.56% 34.83% 32.21% 28.64% 16.04%
TOROIDAL 0 97.06% 99.77% 100.05% 15.31% 1.01% 0.24% 0.68%
HELIX 0.03 97.06% 99.77% 100.10% 8.78% 0.97% 0.32% 0.85%

Table 4. Rknn.

DATASET σ LLE LTSA ISOMAP PSA MVU MVE LOPA
SWISS 0 53.58% 38.19% 14.56% 12.31% 0.56% 0.22% 0.23%
ROLL 0.03 48.45% 39.39% 13.89% 7.48% 1.17% 1.66% 0.55%
SWISS 0 36.02% 36.13% 17.98% 9.77% 0.52% 0.20% 0.13%
HOLE 0.03 33.53% 37.20% 21.13% 10.16% 1.06% 1.44% 0.50%
PUNCTURED 0 12.55% 60.08% 34.78% 38.77% 27.92% 34.80% 24.83%
SPHERE 0.03 12.30% 60.11% 34.73% 63.80% 28.29% 34.73% 26.27%
TWIN 0 31.94% 12.41% 15.91% 32.16% 40.85% 16.67% 32.19%
PEAKS 0.03 15.16% 15.48% 16.16% 27.02% 39.17% 36.45% 33.30%
TOROIDAL 0 0.16% 87.50% 5.09% 31.33% 0.19% 0.16% 84.77%
HELIX 0.03 0.63% 84.06% 0.16% 32.94% 0.29% 0.17% 82.86%

4.1. Synthetic data

Although viewed as “toy data” and shown over and over
again in the manifold learning literature, synthetic datasets
are often self-explanatory to grasp basic properties of each
methods. If one algorithm performs poorly on synthetic
data, nobody would believe its good embeddings on real-
world datasets. Here five synthetic datasets are used to
perform dimensionality reduction from 3D to 2D: Swiss
roll, Swiss hole, punctured sphere, twin peaks, and toroidal
helix. Every dataset has 800 data points, and the number of
neighborhood (k) is set as 8. Two situations are considered,
without noise or with Gaussian noise. In the latter case we

add Gaussian noise N (0, c2σ2) on each dimension of the
coordinates, where σ = 0.03 in our experiments and c is an
average distance among one neighborhood for each dataset.

Figure 1 shows the visualization results. We can
see that LLE and LTSA can not maintain distances and
angles due to their proximity-preserving nature. Other
five methods including LOPA attempt to preserve distances
or isometry, performing poorly on the punctured sphere
because unfolding this curved data into flat will greatly
violate the distance preserving criterion. In comparison,
Isomap yields unsatisfactory or poor results on Swiss roll,
Swiss hole, and punctured sphere; PSA fails to unfold



Table 5. Running time (sec.)

DATASET σ LLE LTSA ISOMAP PSA MVU MVE LOPA
SWISS 0 0.257 0.444 7.439 1866.953 652.166 2414.328 144.110
ROLL 0.03 0.261 0.449 6.665 1491.382 598.826 2506.421 143.023
SWISS 0 0.257 0.441 6.861 1780.307 566.924 2848.470 152.897
HOLE 0.03 0.253 0.447 6.834 2780.833 610.673 3499.761 142.318
PUNCTURED 0 0.241 0.457 6.830 533.858 160.716 437.917 99.776
SPHERE 0.03 0.242 0.465 9.443 2419.072 175.084 639.375 138.883
TWIN 0 0.258 0.448 6.922 3631.019 112.332 1588.542 110.066
PEAKS 0.03 0.282 0.455 9.341 4482.946 188.189 1887.481 110.929
TOROIDAL 0 0.206 0.412 6.874 2710.461 436.081 1255.400 85.829
HELIX 0.03 0.209 0.397 7.185 4608.337 226.327 1741.251 141.108

Figure 2. 2D embedding of the UMist face images by using LOPA, MVU and MVE (from left to right, respectively).

Figure 3. Duck images and cat images in Coil. Note that only part of images are shown in (a).

Swiss roll, punctured sphere, and toroidal helix. The results
offered by LOPA, MVU and MVE are very similar except
that on twin peaks LOPA performs better.

The results of the four geometric measures on synthetic
dataset are listed in Table 1-4, showing that LOPA
outperforms other methods significantly in Rkdist, Rkangl,
and Rkinner. Table 5 shows the running time on a
PC with 2.5GHz CPU and 4G RAM with all algorithms
implemented in Matlab. Note that the implementations
of LOPA, MVU and MVE use SDPT3 in solving SDP

problems for fairness. It is clear that LOPA runs much faster
than PSA, MVU, and MVE.

4.2. Real Data: Varying Pose

In this test we compare the ability of recovering the pose
transition of facial images and Coil data. Figure 2 compares
LOPA with MVU and MVE on 2D embedding of the UMist
facial images for one person. Since the inherent structure
should be a circular arc, we can see that MVU thoroughly
fails to uncover this structure and MVE method yields a



Figure 4. 2D-embedding of images from a basketball video.

Table 6. Runtime and geometric measurements on a basketball video.

measures PCA LLE LTSA Isomap PSA MVU MVE LOPA
Time(sec.) 0.359 0.1753 0.1500 0.3130 211.7510 9.7360 135.8429 2.1530
Rkdist 81.10% 100.00% 100.00% 41.39% 10.61% 49.61% 43.33% 9.71%
Rkangl 46.74% 56.90% 44.10% 45.14% 37.10% 39.26% 35.07% 36.26%
Rkinner 82.63% 100.00% 100.00% 60.70% 50.49% 43.94% 56.08% 42.11%
Rknn 22.94% 36.06% 22.09% 9.04% 51.21% 9.75% 7.04% 7.99%

sin-like curve. In contrast, LOPA reveals the underlying
structure as a circular arc. Figure 3 displays 2D embedding
results of the “duck” and “cat” images in Coil data. Each
group of Coil images, such as the “duck” and the “cat”, was
captured at every 5 degrees by rotating the objects. Hence
the Coil images should have an inherent circle structure. In
comparison, LOPA, MVU, and Isomap perform the best on
the two groups of Coil images, while PSA fails to detect the
circular structure.

4.3. Real Data: Motion Sequence

We use the UCF-sport dataset to explore the low-
dimensional representation of a motion image sequence.
The 2D embedding of a basketball video clip with 140
frames is shown in figure 4. It can be seen that LTSA,
Isomap, LOPA, and MVE can unfold the data into a roughly
smooth curve, maintaining the sequential property of the
motion. Since the ground-truth low dimensional structure
of this dataset is unknown, we also report the quantitative
measurements shown in table 6. From these errors we can
see that LOPA and MVE perform much better than other
algorithms. However LOPA runs much faster than MVE.

4.4. Real Data: Classification

We test the classification performance using k-nearest
neighbor classifier after dimensionality reduction. Five data
sets are used for this purpose. Both the MNIST dataset and
the USPS dataset are handwritten digits. The ORL dataset
consist of 400 facial images of 40 persons under different
conditions. The HIVA dataset is a drug dicovery dataset
with two-class labels. The UCI satellite dataset is an infra-
red astronomy database with six classes. Some datasets
are too large for algorithms like PSA and MVE, so we
randomly sampled 600-800 data points from each dataset.
Each dataset is preprocessed by using PCA to transform the
data into a 100-dimensional space before hand, and then we
run different dimensionality reduction algorithms further to
embed into a very-low dimension.

Table 7 shows the errors of k-nearest neighbor classifier
on embeddings produced by different dimensionality
reduction methods. Some parameters are listed in the
table. We can see that PCA performs well on most
datasets, and takes the first place on two digits data. In
comparison, LOPA achieves the best on the HIVA data



Table 7. Test errors of k-nearest-neighbor (KNN) classification (leave-one-out) on low-dimensional data representation produced by
dimensionality reduction methods. N: number of data points; D: intrinsic dimension estimated by DrToolbox (also as embedding
dimension); Kdr: number of neighbors used in dimensional reduction; Kn: number of neighbors used in KNN classifier.

dataset N D Kdr Kn PCA LLE LTSA Isomap PSA MVU MVE LOPA
usps 600 10 15 15 1.67% 2.83% 2.16% 6.33% 12.33% 5.67% 5.5% 8.83%
mnist 600 20 20 20 1.34% 2.67% 45.50% 2.00% 18.33% 2.00% 2.00% 7.00%
orl 400 8 10 3 4.75% 21.00% 40.75% 19.25% 31.75% 6.00% 4.5% 5.5%
hiva 800 15 15 3 3.50% 3.75% 3.25% 3.63% 3.25% 3.38% 3.37% 3.25%
satellite 800 12 15 15 13.63% 17.0% 16.5% 15.00% 23.25& 15.25% 14.75% 13.62%

Figure 5. 2D embeddings of selected digits (5-7). Top row: the MNIST data; bottom row: the USPS data. Note only example images are
shown in the input (a).

and the UCI satellite dataset. We argue that the main
purpose of manifold learning is to faithfully preserve
the original geometric properties of the input data when
reducing the dimensionality. As class label information
being not used, manifold learning may not compete with
other discriminant dimensionality reduction methods like
Fisher’s linear discriminant projection. The survey of [10]
has claimed that most of manifold learning methods are
even inferior to PCA when using 1-NN classifiers on real
datasets.

Figure 5 displays comparison results of 2D embedding
on digits 5, 6, and 7 from the MNIST data and from the
USPS data. The results indicate that proximity preserving
methods like LLE and LTSA often fail to correctly separate
the three classes of digits, while PSA yields totally mix-
up embeddings on digits. LOPA, together with MVU and
MVE, can yield embedding results that are highly separable
for different digits. It implies that LOPA can serve as a
feature extraction method for digit classification.

5. Conclusion

We proposed a new manifold learning algorithm called
Local Orthogonality Preserving Alignment (LOPA). Our
algorithm is built upon the neighborhood alignment
framework suggested by LTSA, and extend the general
linear transformations in LTSA into orthogonal alignments.
LOPA overcomes the difficulties in PSA by using the
pseudo-inverse trick to avoid multiple incompatible local

transformations. Compared with the complicated simulated
annealing method used in PSA, we use more efficient SDP
relaxation to find the numerical solutions. Experimental
results demonstrate that LOPA can produce embedding
results comparable to state-of-the-art algorithms like MVU
and MVE. Particularly, our method can faithfully preserve
distances, angels, inner products, and neighborhood of the
input data. On the other hand, the complexity of LOPA is
much lower than MVU and MVE because the number of
constraints used in LOPA is smaller. Our future work is to
investigate efficient numerical methods and to explore some
real applications in visualization and classification.
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