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Abstract—In Dirichlet process (DP) mixture models, the
number of components is implicitly determined by the sampling
parameters of Dirichlet process. However, this kind of models
usually produces lots of small mixture components when
modeling real-world data, especially high-dimensional data. In
this paper, we propose a new class of Dirichlet process mixture
models with some constrained principles, named constrained
Dirichlet process (CDP) mixture models. Based on general
DP mixture models, we add a resampling step to obtain
latent parameters. In this way, CDP mixture models can
suppress noise and generate the compact patterns of the data.
Experimental results on data clustering show the remarkable
performance of the CDP mixture models.
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I. INTRODUCTION

In data clustering and modeling, various mixture models
are basic tools to model data and discover the patterns
of data. In recent years, Dirichlet process (DP) mixture
models [1]–[3], have received much attention in the machine
learning community. The DP mixture model is one kind
of mixture models with a Dirichlet process prior. With the
nonparametric nature of the Dirichlet process, DP mixture
models can generate countable components in modeling
data. In contrast to finite mixture models such as Gaussian
mixture models, DP mixture models do not need the number
of components as a given parameter.

The DP mixture models have witnessed several successful
applications [4]–[6], due to the flexibility of DP mixture
models. Some problems of DP mixture models have been
brought about when apply them to practical problems.
For example, in clustering on high-dimensional data space,
the DP mixture models always produce more components
than that the real data should have. These small mixture
components are mainly caused by noise or sparsity of high-
dimensional data distribution.

Some approaches have been proposed for solving this
problem. In [7], an upper bound of the number of com-
ponents is fixed in advance to limit the number in modeling
with mixture models. In [1], components with little data
points are simply discarded, and these data points are
reassigned to other existing components. However, these
two methods based on simple thresholds can not be directly
used for real world data, since choosing the best thresholds

is usually difficult. Note that, another constrained Dirichlet
process mixture model is also proposed in [8] for verb
clustering, which is different with our model, because it
considers some particular properties in natural language
processing.

In this paper, we focus on the problem that how to obtain
a reasonable mixture models in modeling data, especially
high-dimensional and noisy data. We propose constrained
Dirichlet process (CDP) mixture models, which impose
some constraints to the DP mixture models. By introducing
a resampling step, the CDP mixture models can handle the
problem and provide more reasonable results in practice. In
experiments, data clustering and motion segmentation show
the better performance of the CDP mixture models than
those of DP mixture models and finite mixture models.

II. CONSTRAINED DIRICHLET PROCESS MIXTURE
MODELS

The Dirichlet process (DP) is a stochastic process whose
sample paths are probability measures with probability one.
For a random distribution G of a DP, its marginal dis-
tributions have to be Dirichlet. Specifically, let G0 be a
distribution over Θ, and α be a positive real number. Then
for any finite and measurable partition A1, · · · , Ar of Θ, if

(G(A1), · · · , G(Ar)) ∼ Dir(αG0(A1), · · · , αG0(Ar)),

then G is a Dirichlet process with base distribution G0 and
concentration parameter α, written as G ∼ DP(α, G0).

With the Dirichlet process prior, we model a set of obser-
vations X = {x1, . . . , xn} using a set of latent parameters
θ1, . . . , θn. Each θi is drawn independently and identically
from G, while each xi has distribution F (θi) parametrized
by θi:

G|α, G0 ∼ DP(α, G0),
θi|G ∼ G,

xi|θi ∼ F (θi).
(1)

Because G is discrete, some of {θi}n
i=1 could take on the

same value simultaneously and the above model can be
viewed as a mixture model, since xi with the same value of
θi belong to the same mixture component.

From stick-breaking construction, we can get another
viewpoint of the DP mixture model. Let ci be a variable



for component assignment (also known as latent variable
in mixture models), which takes value k with probability
πk. DP mixture models can be equivalently expressed as
following:

π|α ∼ GEM(α),
ci|π ∼ Multional(π),

φk|G0 ∼ G0,

xi|ci, φk ∼ F (φci),

(2)

with G =
∑∞

k=1 πkδ(φk) and θi = φci
. In Eq.(2), π

is the mixing proportion, φk are the mixture component
parameter, F (φk) is the distribution over observations in
mixture components k, and G0 is the prior distribution over
φk. Because the value of πk decrease exponentially with
increasing k, only a finite number of components will be
used to model the data. In the DP mixture model, the actual
number of mixture components used to model data is not
fixed.

When modeling real-world data, especially high-
dimensional data, using DP mixture models, there are
always more mixture components than the mixture models
where the data come from. Furthermore, some of these
mixture components are employed to model noise. This is
often unreasonable for many practical applications in data
clustering. For example, when we segment one sequence
of motion data using DP mixture models, noise in the data
leads to more mixture components as illustrated in Figure
3. To cope with this kind of problems, we propose the CDP
mixture model.

The CDP mixture model can be expressed as following:

G|α, G0 ∼ DP (α, G0),
θi|G ∼ G,

ξi|θi ∼ H(θi),
xi|ξi, θi ∼ F (ξi).

(3)

In CDP mixture model (3), latent variables {ξi} is in-
troduced with {θi} to indicate the distribution of {xi}:
xi|ξi, θi ∼ F (ξi), i = 1, . . . , n. H is a finite discrete
distribution over distinct values of θi, where the probability
of ξi are proportional to the number of data related to θi,
and to the possibility of data belong to a mixture component.
Using the probability distribution H , we can sample the
parameter ξi which can be viewed as resampling from θi.
This resampling procedure make the value of ξi concentrate
on a small number of θi. Consequently, the data concentrate
on a small number of mixture models.

A. Thrifty Chinese Restaurant Process with Finite Cus-
tomers

Using DP mixture model for cluster analysis, the number
of mixture components can be determined automatically.
The clustering effect can be viewed as a partition of in-
tegers, and the distribution over partitions is called Chinese

Figure 1. Graphical illustration of the CDP mixture model.

restaurant process. To get better understanding, suppose that
there is a Chinese restaurant with an infinite number of
tables. Each table can allow an infinite number of customers.
The first customer enters the restaurant and chooses any one
table to sit. The second customer enters and decides either
to sit with the first customer, or to sit at a new table. In
general, the nst customer either joins an already occupied
table k with probability proportional to the number nk of
customers already sitting there, or sits at a new table with
the probability proportional to α without further restricts.

However, in an thrifty restaurant, the manager of this
restaurant always wants to vacate some tables for new
customers and utilize only a small number of tables. Suppose
that N customers have occupied K tables currently. The
manager may specify only K ′(< K) tables to be served,
and then each customer should re-choose his/her seat among
these K ′ tables.

III. INFERENCE

Inference algorithms on DP mixture models include some
sampling methods (mainly the Markov chain Monte Carlo
algorithm) [3], [9], and also some variational inference
algorithms [10]. For our CDP mixture models, we proposed
a sampling method based on the algorithms on DP mixture
models to infer the latent variables. According to model (3),
the main objective of inference is to sample latent variables
θis and ξis from posterior distribution with Dirichlet process
prior.

The approach to sample θi is to repeatedly draw sam-
ples from its conditional distribution given the data X =
{x1, · · · , xn} and θj(j 6= i) (written as θ−i for short). The
likelihood for θi is Fxi(θi) since xi is under distribution
F (θi). The prior distribution of θi is

θi|θ−i ∼
1

n− 1 + α

∑
j 6=i

δ(θj) + αG0

 . (4)



When integrating the likelihood with the prior, we have the
following conditional distribution

θi|θ−i, xi ∼ b

∑
j 6=i

Fxi(θj)δ(θj)

+Hiα

∫
Fxi(θ)dG0(θ)

}
.

(5)

where b a is normalizing constant, Hi is the posterior distri-
bution of θ, which can be obtained from prior distribution G0

and likelihood Fxi
(θ). In CDP mixture models, the integral

in Eq.(5) is not analytically tractable. We adopt algorithms
proposed in [3] to tackle this problem.

Here, Ξ∗ = {ξ∗1 , . . . , ξ∗T } is defined the set of distinct
values of {ξi}n

i=1. In the CDP mixture model, we need to
resample parameters ξi from Ξ∗. The posterior distribution
of ξi of data xi is given as

ξi|ξ−i ∼
∑

j 6=i, ξj∈Ξ

Fxi
(ξj)δ(ξj), (6)

The resampling procedure is illustrated in Algorithm 1. The

Algorithm 1 Resampling process
Input:X = {xi}N

i=1, Ξ∗ = {ξ∗t }T
t=1

for i = 1 to N do
for t = 1 to T do

Given ξ∗t , pt = Fxi(ξ
∗
t )

end for
t = argmaxt{p1, · · · , pT }
ci = t
ξi = ξ∗t

end for

value of T in Algorithm 1 is computed through the following
optimization problem:

T = min
t

K∑
k=1

tk,

s.t.
K∑

k=1

tkNk ≥ κN,

(7)

where t = {tk}K
k=1 ∈ {0, 1}K is a K-dimensional vector,

Nk is the number of data belong to the kth mixture compo-
nent, and 0 < κ < 1. Note that if κ = 1, then T = K and
CDP mixture models is equivalent to DP mixture models.

IV. EXPERIMENTAL RESULTS

In experiments, we test our algorithm on real data with
noise. In order to give an intuitive illustration, the CDP
mixture models and DP mixture models were employed
for clustering the old faithful geyser data. Then, the CDP
mixture models were employed for motion segmentation,
which can be viewed as clustering sequential data in high-
dimensional space.

Figure 2. Clustering results using DP mixture models (blue bars) and
CDP mixture models (red bars) respectively for Old Faithful Geyser data.
The horizontal axis shows each component, and the vertical axis shows the
number of data points in each component.

Figure 3. Motion segmentation on one sequence using a DP mixture model.
Due to the noise in data, there are more than 20 mixture components in
this DP mixture model.

A. Old Faithful Geyser data

The Old Faithful Geyser data is widely used in the
task of clustering to show the performance of clustering
algorithms. Here, we compare the results of clustering on
these data using DP mixture models and CDP mixture
models respectively.

Figure 2 shows the components obtained from the DP
mixture model and the CDP mixture model. We can see
that there are four mixture components in the DP mixture
model and only two mixture models in the CDP mixture
model. Therefore, we can see that the CDP mixture model
successfully suppress small components, and generate better
result than that of the DP mixture model.

B. Clustering for Motion Segmentation

Motion data from motion capture has frequently used in
motion analysis in computer vision. Motion segmentation is
one of the basic approaches to analyze motion behaviors in
data from motion capture.

Currently, there are several method for motion segmen-
tation based on statistical modeling and machine learning.
In [11], Gaussian mixture models is employed for segmen-
tation. As one kind of finite mixture models, the problem



Method Precision Recall
GMM [11] 0.77 0.71
CDPMM 0.86 0.82

Table I
THE PRECISION AND RECALL SCORES OF GAUSSIAN MIXTURE MODEL

(GMM) AND CDP MIXTURE MODEL (CDPMM) FOR MOTION
SEGMENTATION

Figure 4. Motion segmentation on one sequence using CDP mixture
models (Blue line: the result from CDP mixture model, Red line: hand-
labeling ground truth). There are four kinds of motion in this sequence:
jumping forward, punching, walking and lag kicking.

is the number of mixture components should be given at
first as a input parameter. However, in dealing with practical
problems, it is difficult to determine this parameter.

In this experiment, all the sequences are obtained from
motion capture equipments at 120 frames per second. For
comparison with [11], we use the same motion sequences.
In preprocessing step, we use PCA to project the frames
onto a lower dimensional subspace. The number of principal
components is chosen so that 90% of the variance of the
original data is preserved.

The results of motion segmentation on one sequence are
illustrated in Figure 3 and 4, where the performance of DP
mixture models and CDP mixture models are compared.
In Figure 4, the performance of segmentation using CDP
mixture models (blue line) is compared with hand-labeling
ground-truth segmentation (red line). For this CDP mixture
model, only a small number of frames are assigned to error
clusters, mainly in the period of motion transitions.

The CDP mixture models were tested on 14 sequences,
which consists of approximate 5000 ∼ 8000 frames re-
spectively. Each sequence is a series of different motions,
including walking, running, climbing, etc. The overall results
in Table 1 show the better performance of CDP mixture
models than that of Gaussian mixture models [11].

V. CONCLUSION

In this paper, we proposed CDP mixture models to model
the high-dimensional data with noise. For this kind of data,
the DP mixture models always trend to produce additional

small components. Experiments on real-world data demon-
strated that our CDP mixture models can achieve better
performance than general DP mixture models and finite
mixture models.
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