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Abstract

Recent years have witnessed a growing interest in
the sparse representation problem. Prior work demon-
strated that adaptive dictionary learning techniques can
greatly improve the performance of sparse represen-
tation approaches. Existing techniques mainly focus
on the reconstructive accuracies and the discrimina-
tive power of the learned dictionary, whereas the mu-
tual incoherence between any two basis atoms has been
rarely studied yet. This paper proposes a novel method
by explicitly incorporating a correlation penalty into
the dictionary learning model. Experiments show that
the proposed method can remarkably reduce the corre-
lation measure of the learned dictionaries, and at the
same time achieve higher classification accuracies than
state-of-the-art algorithms.

1. Introduction

This paper focus on the dictionary learning problem
in sparse representation framework:

min |[Y — DX

subject to ||djlla =1, j=1,..., K,
Ixillo <T,i=1,...,N, @))]

where Y = [y, ..., yn] in R™*¥ is the input data ma-
trix that contains N vectors of m dimensions, D =
[d1,...,dg] in R™*X is the dictionary to be learned,
and X = [xi,...,xy] in REXY is the sparse vector
matrix. The first constraint imposes a unit /s-norm for
each basis atom in the dictionary, while the second is
for the sparsity prior with a bound parameter 7. The
goal of dictionary learning is to adapt a nonparametric
dictionary for providing better performance than using
a fixed dictionary.

The earliest work in dictionary learning was the
MOD[2], and the most popular method is the K-
SVD[1]. Most prior works aimed at improving both

reconstructive and discriminating power of the learned
dictionary when class labels can be available for the in-
put data. Zhang and Li [8] developed the D-KSVD al-
gorithm by directly incorporating the labels of training
data, while Pham and Venkatesh [6] integrated a lin-
ear classifier into the dictionary learning model. In [5]
and [4], Mairal established a discriminative model via
a shared dictionary and multiple class-decision func-
tions. In [7] the relationship between two dictionaries
for different classes was addressed, but the relationship
among atoms of one single shared dictionary had not
been investigated yet. In this paper, our purpose is to
develop a discriminative dictionary learning model that
maximizes the incoherence of basis atoms in one sin-
gle output dictionary. Experimental results on two face
databases and one digits database demonstrate that the
proposed method outperforms K-SVD and D-SKVD al-
gorithms by providing higher classification accuracies
and meanwhile reducing the correlation of the basis
atoms among the learned dictionaries.

The paper is organized as follows. In Section 2
we propose the Incoherent Dictionary Learning(IDL)
method and describe the algorithm implementation.
Section 3 shows the experimental results and Section
4 concludes the paper.

2. The Proposed Algorithm

2.1. Incoherent Dictionary Learning (IDL)
model

We first define the correlation measure of a dictio-
nary D as:

cor(D) = |D"D —1I||3, )

where I € RE*K ig an identity matrix. Clearly, the
correlation measure is zero for a dictionary D whose
columns are orthonormal, and in this case we say D
most incoherent. It is worth noting that this definition is
not a trivial measure, as

ID'D —1|j% = tr(D'D -T(D'D - 1)) 3)
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Figure 1. Flowchart of the proposed dictionary
learning method for classification.

is a four degree term with respect to D. Our goal is
to maximize this incoherence to efficiently represent
the input data. Fig.1 shows the flowchart of dictionary
learning for supervised classification problems.

In order to get a more discriminative dictionary, we
adopt the method in [6] to integrate classification errors
into the dictionary learning model:
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+n[[H - WX|[% + 5|W|Z,
subject to ||xillo <T,i=1,...,N, “)

where W in RM XK denotes the linear classifier ma-
trix, H = [hy, hy, ..., hy] in RM*¥ is the class label
matrix of the training data Y, and M is the number of
classes. Note that a class label vector h; for sample y;
is a all-zero vector except for its j-th entry being one if
y; belongs to the j-th class. The third term measures
the classification error by using a linear classifier W on
the sparse feature vector matrix X, while the fourth is a
regularization of W. There are three regularization pa-
rameters (\, 77, and () that reflect relative contributions
of each term.

The unit norm constraint has been dropped in the
above model (4), because the [5-norm of each column
basis atom in D can not be far from 1 due to the cor-
relation penalty imposed in the second term. We argue
that the column atoms need not be of unit norm exactly,
and eliminating the unit norm constraint would not sac-
rifice the reconstructive and discriminative ability of the
learned dictionary. On the other hand, the dictionary up-
dating can be much easier to speed up the algorithm by
discarding the unit norm constraint.

2.2. Algorithm implementation

As the objective function in (4) is non-convex, find-
ing a global solution might not be available in practise.
Therefore, a three-step iteration procedure is utilized
(listed in Alg.1), and details of each step are described
as follows.

Algorithm 1 Algorithm for supervised IDL model.
Input:
Training data Y; D and X initialized through K-SVD.
Output:
Dictionary D, sparse vector matrix X, and classifier
W.
Repeat:
Classifier updating step to learn W by fixing D
and X.
Dictionary learning step to learn D by fixing W
and X.
Sparse coding step to learn X by fixing D and W.
Until: Convergence of the objective function or max-
imal iteration times.

3.2.1. Classifier update step. When D and X are
fixed, the objective function of W turns out to be

min [ H — WX|[% + 5[[W]| 7. 5)

Clearly, this unconstrained optimization is a multivari-
ate ridge regression problem which can be solved di-
rectly by setting the partial derivatives with respect to
W to zero. The global optimal solution of (5) is

W = HXT(XXT +41)71, (6)

where v = 3/n.

3.2.2. Dictionary learning step. Fixing X and W, the
optimization problem about dictionary D can be re-
duced to

min|[Y - DX|} + A[DD ~1[3. ()

We follow the spirit of K-SVD algorithm by updating
each column of basis atom dj, among the dictionary D
in a random order when fixing other atoms unchanged.
The unconstraint problem of dj can be solved by setting
the partial derivatives with respect to dy, to zero, with
the optimal solution written as

dy = (x5x: I+ 20D D) 'Eyxy,  (8)

where By =Y — 3., d;x) , Df = {d;}jes. J =
{1,...k — 1,k +1,..., K}, and x% is the k-th row of
X.



The procedure is repeated until all atoms in the dic-
tionary are updated once. Note that an updated atom can
play arole immediately in updating following atoms, no
need to wait until all atoms finish.

3.2.3. Sparse coding step. When fixing D and W, the
objective function with X can be written as

min [ Y — DX|[ +n|[H - WX,
subject to ||xi]lo < T, i=1,...,N. 9)

By grouping into a larger matrix, we have

() ~ () x

This formulation is just same as the sparse representa-
tion model, hence can be efficiently solved by OMP or
any other sparse representation algorithm.

2
min

i (10)

F

2.3. Classification for a new test sample

Upon finishing the dictionary learning stage, we ob-
tain a dictionary D and a linear classifier W simultane-
ously. For a new test sample y, the OMP algorithm is
used to compute its sparse vector x based on the learned
dictionary D. The sparse vector x can serve as an ex-
tracted feature vector for classification. For simplicity,
we directly use the learned linear classifier W to make
the label decision:

label(y) = argmax{z; | z = [z1, ..., zp1) := Wx}.
J
(1D

3. Experimental Results

The proposed IDL model is compared with K-SVD
and D-KSVD algorithms on two face databases and one
digital number database. In our experiments, parame-
ters A and 7 are tuned using cross-validation in a 2-D
parameter space. It was observed that the linear clas-
sifier W tends to be well bounded in the three step it-
erations, so the parameter 3 is set to be very small (or
even zero). The image preprocessing step are same as
in K-SVD and D-KSVD implementations: change each
image into a column vector, normalize to unit norm, and
then project into a lower dimensional space using PCA.

3.1. The Extended YaleB face database

The Extended YaleB database contains about 2414
frontal face images of 38 individuals (Figure 2). We
randomly split the database into two halves for training
and testing. Similar to the experimental settings in [§],

face images are cropped as 168x192 pixels and then
reduced to 504-dim. by PCA. The dictionary size is set
to have 570 basis atoms, and the sparsity prior is set as
T =16.

Figure 2. Example images of the Extended
YaleB Database.

Table 1. Classification accuracies and aver-
age cross-correlation coefficients on the Extended
YaleB database.

Method IDL
95.86%
0.2860

D-KSVD | K-SVD
94.70% | 93.54%
0.3680 0.3816

accuracy

correlation

From Table 1 we can see that the proposed method
achieves higher accuracies and at the same time reduces
the cross-correlation coefficient of two basis atoms
among the learned dictionary. Fig.3 illustrates his-
tograms of correlation coefficients for learned dictionar-
ies by K-SVD, D-KSVD, and IDL, showing that IDL
yields a highly incoherent dictionary.
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Figure 3. The histogram of correlation coef-
ficients for each pair of atoms in the learned
dictionary by K-SVD(blue), D-KSVD(red), and
IDL(green).

3.2. The CAS-PEAL-R1 face database

The CAS-PEAL-R1 Face Database [3] contains
30,900 images of 1,040 individuals with varying pose,
expression, accessory and lighting (PEAL) (Fig. 4). We
embed each cropped face image of 80x 100 pixels into
a 500-dim. space. The dictionary is set to contain 700
atoms, and 7' = 16. The results are summarized in
Table 2. All methods achieve high accuracies (>90%)



on expression data set, while perform very poorly on
the most challenging pose variations. In comparison,
K-SVD yields the lowest accuracy while IDL performs
the best.

Figure 4. Sample images of CAS-PEAL-R1 Face
Database.

Table 2. Accuracies on CAS-PEAL-R1 data.

Method IDL D-KSVD | K-SVD
Pose 45.04% | 36.78% | 21.49%
Expression | 95.45% | 94.63% | 90.91%
Accessory | 58.68% | 50.83% | 36.36%
Lighting | 57.85% | 43.80% | 38.02%

3.3. The USPS handwritten digital number
database

The USPS data contains about 5500 handwritten dig-
ital number images of 16x 16 pixels. The dictionary
is set to have 300 atoms, and 7' = 15. From Table
3, we can see that our method offers higher testing ac-
curacies than K-SVD and D-KSVD, demonstrating the
advantages of incoherence constraints. Fig. 5 shows
examples of basis atoms in learned dictionaries by IDL
and K-SVD. It is interesting to see that basis atoms in
IDL dictionary exhibit great variations in gray scales
and blurred shape contours of digits, due to the correla-
tion penalty.

4. Conclusion

In this paper, we propose a new method that in-
tegrates correlation penalty into dictionary learning
model. Experimental results confirmed that our method
can greatly enhance the incoherence degree of dictio-
nary and meanwhile yield higher classification accu-
racies. The future work is to investigate the cross-
correlation between the dictionary D and the training
dataY.
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Table 3. Accuracies and correlation measures on
USPS data.

Method IDL D-KSVD | K-SVD
Acc(train) | 97.49% | 98.51% 100%

Acc(test) | 93.85% | 93.38% | 92.6%
correlation | 0.2746 0.3748 0.3866

Figure 5. Dictionaries learned by IDL (left) and
K-SVD (right).
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