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Abstract

In lung cancer radiotherapy, radiation to a mobile target can be delivered by
respiratory gating, for which we need to know whether the target is inside or
outside a predefined gating window at any time point during the treatment.
This can be achieved by tracking one or more fiducial markers implanted
inside or near the target, either fluoroscopically or electromagnetically.
However, the clinical implementation of marker tracking is limited for lung
cancer radiotherapy mainly due to the risk of pneumothorax. Therefore,
gating without implanted fiducial markers is a promising clinical direction.
We have developed several template-matching methods for fluoroscopic
marker-less gating. Recently, we have modeled the gating problem as a
binary pattern classification problem, in which principal component analysis
(PCA) and support vector machine (SVM) are combined to perform the
classification task. Following the same framework, we investigated different
combinations of dimensionality reduction techniques (PCA and four nonlinear
manifold learning methods) and two machine learning classification methods
(artificial neural networks—ANN and SVM). Performance was evaluated on
ten fluoroscopic image sequences of nine lung cancer patients. We found
that among all combinations of dimensionality reduction techniques and
classification methods, PCA combined with either ANN or SVM achieved a
better performance than the other nonlinear manifold learning methods. ANN
when combined with PCA achieves a better performance than SVM in terms of
classification accuracy and recall rate, although the target coverage is similar for
the two classification methods. Furthermore, the running time for both ANN
and SVM with PCA is within tolerance for real-time applications. Overall,
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ANN combined with PCA is a better candidate than other combinations we
investigated in this work for real-time gated radiotherapy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A major uncertainty in treating lung cancer with radiation is the respiratory lung tumor
motion, which can be clinically significant for some patients. Respiratory gated lung
cancer radiotherapy holds promise to precisely deliver prescribed radiation dose to the tumor,
while minimizing the incidence and severity of normal tissue complications (Jiang 2006a).
Respiratory gating limits radiation exposure to a portion of the breathing cycle when the tumor
is in a predefined gating window. Due to a reduced planning target volume, precise target
localization in real time is particularly important for gated radiotherapy (Jiang 2006b).

We have developed several template-matching methods which have been proved feasible
for solving the fluoroscopic markerless gating problem (Berbeco et al 2005, Cui et al 2007).
However, template matching does not utilize the information outside the gating window in
building templates, which could be important for improving the accuracy and robustness
of the algorithm. Recently, we have modeled the gating problem as a binary classification
problem and solved it by means of a support vector machine (SVM) classifier (Vapnik and
Cortes 1995) combined with a dimensionality reduction technique called principal components
analysis (PCA) (Alpaydin 2004). This method achieved slightly higher accuracy compared
to template matching at the price of significant amount of training time to search the optimal
parameter set (Cui et al 2008).

Dimensionality reduction and classification are two essential parts in machine learning
algorithms (Alpaydin 2004). Selecting the right dimensionality reduction technique and
classification algorithm can yield an optimal final result. In this work, we adopt the same binary
classification framework as proposed previously (Cui et al 2008). Within this framework,
we investigate four other dimensionality reduction techniques besides PCA, namely locally
linear embedding (LLE), local tangent space alignment (LTSA), Laplacian eigenmap (LAP)
and diffusion maps (DMAP) (Lin and Zhang 2008). PCA is one of the most widely used
dimensionality reduction techniques. It finds the best linear representation of the data in
the mean-square sense. Unlike PCA, these four algorithms belong to manifold learning
algorithms, which represent the latest nonlinear dimensionality reduction techniques. In recent
research literatures, these algorithms have demonstrated better performance than classical
dimensionality reduction techniques such as PCA, especially on curved and nonlinear data
sets (Roweis and Saul 2000). Specifically, the benefit of any manifold learning method
over classical methods was shown in the famous Swiss roll data, which are curved and
nonlinear. Linear methods such as PCA often fail while most manifold learning methods can
successfully model the Swiss roll data. In exploratory data analysis, the linearity assumption is
not warranted. It is therefore also important to investigate nonlinear dimensionality reduction
techniques despite their higher computational cost. For classification, in addition to SVM, we
combine the dimensionality reduction techniques with a three-layer artificial neural network
(ANN) for gated lung cancer radiotherapy. The performance of the algorithms is evaluated
in a retrospective fashion on ten fluoroscopic video sequences of nine patients. We will
compare the performance of ANN with SVM when combined with the aforementioned five
dimensionality reduction techniques.
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Figure 1. A set of training fluoroscopic image sequence (left) and the selected ROI images (right).

This paper is organized as follows. In section 2, we present the proposed algorithms
in detail. Section 3 describes the experiment set-up and evaluation metrics used to test the
proposed algorithm. Section 4 reports the experimental results. Finally, section 5 presents our
conclusions.

2. Methods and materials

The goal of gated radiotherapy is to decide when to turn the beam on or off. As such, the
gating problem can be reformulated as a binary classification problem. The goal now becomes
finding a decision boundary that will separate future fluoroscopic images into beam ON or OFF
class. The purpose of the classification algorithms is to learn an optimal decision boundary in
a well-defined sense based on a subset of the entire data set called the training set.

2.1. Training fluoroscopic images

Prior to treatment, a sequence of fluoroscopic images are acquired for training purposes. A
region-of-interest (ROI) that includes the tumor motion is selected on the training fluoroscopic
images. Each ROI is manually labeled by human expert observers with either class beam
ON or beam OFF based on the gating window size determined during treatment planning.
In patients where the tumor was hard to identify visually in the fluoroscopic images, an
anatomical structure nearby the tumor was used.

Figure 1 shows an example of a set of training fluoroscopic images and the selected ROIs.
The first two ROIs are within the gating window and labeled as beam ON class, and the next
four are outside the gating window and thus labeled as beam OFF class.

2.2. Dimensionality reduction techniques

The purpose of dimensionality reduction is twofold. First, it is to reduce the training sample
size and therefore decrease the computational cost. A typical ROI size could be 100 ×
100 pixels. This means that the dimensionality of a training sample would be 100 × 100 =
10 000 (assuming each pixel in the ROI is independent). Significant computational time and
resources would be needed with these high dimensional samples. This is simply not practical
for real-time gated radiotherapy. With dimensionality reduction, the dimensionalities of the
training samples can be significantly reduced, and consequently, much less computational
time and resource would be needed. Secondly, it is to extract significant features of the ROI
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automatically. A dimensionality reduction technique will automatically sort the information
based on its importance and retain the most important components. For instance, PCA involves
a mathematical procedure that transforms the original correlated variables into a small number
of uncorrelated variables called principal components. The first principal component accounts
for as much of the variability in the data as possible, and each succeeding component accounts
for as much of the remaining variability as possible.

Besides PCA, four other dimensionality reduction techniques are investigated in this
work, including LLE, LTSA, LAP and DMAP (Lin and Zhang 2008). These four manifold
learning methods find a nonlinear transformation by preserving neighborhood distances. Most
manifold learning methods need two key parameters, one to describe the neighborhood size
and one to describe the intrinsic dimension or output dimension. The results might be very
different if these two parameters are varied. A detailed comparison of different dimensionality
reduction techniques can be found in Lin and Zhang (2008).

We first map each training ROI image into a 30-dimensional linear space using PCA. Then,
we further reduce the dimensionality of the training ROI image to 10 using the five methods
described above. These features lie in a significantly lower dimensional space compared with
the original ROI image and will be fed later into the classification algorithms as the input.

2.3. Artificial neural network

An ANN is an effective computational model for pattern classification and function
approximation (or regression analysis). It is inspired by the way the biological nervous system
processes information. ANN includes massively parallel systems with large numbers of
interconnected simple processors, and it can solve many challenging computational problems.
An ANN can learn any arbitrarily complex function by adding neurons and layers to the
network. A function is learned by adjusting the weights of the network. These weights are
tuned by minimizing a least-squares error optimization function through a back-propagation
algorithm. For this gating problem, we employ a standard three-layer neural network with an
error back-propagation algorithm. Figure 2 illustrates a three-layer neural network. In our
gating system, the input layer has ten neurons to match the ten-dimensional input data after
dimensionality reduction. There are five neurons in the hidden layer and only one neuron in
the output layer.

A trained ANN can be thought of as an ‘expert’ in the category of information it has been
given to analyze. In our gated lung radiotherapy application, a trained ANN automatically
processes the fluoroscopic images acquired during the simulated treatment and classify them
into the beam ON or OFF class and then generate the corresponding gating signals.

2.4. Simulated treatment delivery

During simulated treatment in this retrospective study, ROI at the same location as in the
training fluoroscopic images is automatically selected on each new fluoroscopic image acquired
during simulated treatment. The same dimensionality reduction technique is applied on the
new ROIs. The trained ANN is then applied to automatically process each ROI with the
reduced dimensionality and classifies it into either the beam ON or OFF class. Gating signals
are then generated accordingly.

3. Experimental setup and evaluation metrics

For this study, ten fluoroscopic image sequences of nine lung cancer patients have been acquired
at University of California San Diego (UCSD) using a Varian on-board imaging (OBI) system
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Figure 2. A simple neural network with three layers neurons. In this figure, there are four neurons
in the input layer, two neurons in the hidden layer and one neuron in the output layer.

Table 1. Categories of classification results.

Benchmark

Beam ON Beam OFF

Classification results Beam ON True positive False positive
Beam OFF False negative True negative

(Varian Medical Systems, Palo Alto, CA, USA). The fluoroscopic image frequency is 15 Hz,
and each image size is 1024 × 768 pixels. The average image sequence length is about 40 s
(i.e. 600 frames). For each patient, 15 s of fluoroscopic images (225 frames) at the beginning
of the sequence are used as training data. The rest of the frames are used as testing data for
validation purpose. We used CMU’s ANN implementation in C (CMU 1995) and Libsvm’s
SVM implementation (Chang and Lin 2007) in C++. Both implementations were wrapped into
DLLs that can be called from MatLab (MathWorks, Natick, MA, USA). All other proposed
computational frameworks were implemented on MatLab 7.3.

We define the true positive (tp), false positive (fp), true negative (tn) and false negative
(fn) in table 1. Figure 3 shows an example of tp, fp, tn and fn. A sequence of fluoroscopic
images are mapped into a three-dimensional space as shown in figure 3(a), where the blue
points belong to the true beam ON class and the red points are from the true beam OFF class.
Figure 3(b) shows the classification results in terms of tp, fp, tn and fn, where different colors
represent different categories. Figure 4 shows an example of the gating signal generated by
using the classification results. The corresponding tp, fp, tn and fn are displayed in the figure.
The classification results are measured in terms of the classification accuracy (CA), the recall
rate (RR) and the target coverage (TC), where CA = tp+tn

all , RR = tp

tp+f n
and TC = tp

tp+fp
.

Among these three metrics, CA and RR are common in machine learning field, while TC is
more clinically relevant. TC is a first-order measure of the delivered target dose relative to
the prescribed target dose. For instance, a TC of 80% means that 80% of the prescribed dose
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(a) (b)

Figure 3. (a) 3D representation of the original fluoroscopic images using PCA projection, where
red and blue dots indicate the true beam ON and beam OFF classes, respectively. (b) Classification
results: red (tp), blue (tn), cyan (fp) and yellow (fn).

Figure 4. Top: gating signals with ground truth in blue and the result of the algorithm (PCA
and combined with ANN) in red for fluoroscopic sequence 4; Bottom: four kinds of classification
results: red (tp), blue (tn), cyan (fp) and yellow (fn). CA = 0.9441, RR = 0.8447 and TC =
0.9667. This differs slightly from table 2 since the result in table 2 for each sequence is an average
of ten such runs from different initial weights of the ANN. The vertical green dashed line divides
the images into training and test sets.

is delivered to the target and 20% delivered to the surrounding normal tissues. In Cui et al
(2008), besides TC, duty cycle (DC) was used as the evaluation metric, which is defined as
DC = tp

all . It is easy to see that given a particular data set with a ground truth gating signal,
RR and DC are always proportional to each other independent of what algorithms are used.
Thus, they can be considered as equivalent metrics for evaluation purpose.

4. Results and discussions

The experimental results are reported in tables 2 and 3. From table 2, we can see that the RR
for fluoroscopic sequences 1, 2, 3, 4 and 9 is markedly lower than the other sequences for
most dimensionality reduction techniques (except LTSA, whose average RR is much lower
than others). A similar pattern may also be observed for SVM-based results in table 3. A
low RR indicates a large number of false negatives compared with true positives, meaning
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Table 2. Performance of various dimensionality reduction techniques combined with ANN. Three
numbers in each cell represent the classification accuracy, the recall rate and the target coverage in
percentage.

Fluoroscopic
sequences PCA LLE LTSA LAP DMAP

1 94.5, 79.1, 100 92.0, 80.6, 89.3 88.7, 65.7, 88.9 94.2, 81.3, 96.9 92.6, 81.7, 91.3
2 95.4, 82.7, 98.2 90.6, 82.3, 82.0 89.3, 65.0, 88.8 94.0, 80.9, 94.3 93.4, 84.2, 90.1
3 95.3, 82.6, 97.9 92.5, 80.8, 88.8 88.8, 65.1, 86.5 93.3, 81.9, 91.5 94.4, 84.0, 93.2
4 95.5, 83.3, 97.8 92.9, 83.6, 87.8 89.4, 65.1, 88.6 93.8, 82.1, 92.5 93.4, 85.6, 89.2
5 97.9, 95.8, 98.3 93.1, 95.9, 86.7 73.8, 72.1, 62.3 91.3, 96.5, 82.9 92.4, 97.8, 84.6
6 97.3, 97.4, 97.4 98.1, 98.4, 97.9 62.6, 50.0, 68.3 97.8, 96.8, 98.9 97.8, 98.9, 96.9
7 98.0, 95.4, 98.3 96.9, 98.0, 93.3 77.1, 73.3, 63.1 93.6, 98.5, 85.4 93.8, 99.0, 85.4
8 98.9, 98.4, 99.2 98.6, 99.2, 97.7 55.5, 29.1, 50.7 98.9, 97.6, 100 98.6, 96.9, 100
9 95.8, 87.0, 97.7 96.0, 88.4, 96.7 83.5, 44.2, 93.3 96.0, 88.0, 97.4 96.0, 87.8, 97.7

10 94.6, 97.5, 93.5 92.9, 95.7, 92.4 70.0, 94.8, 67.5 93.6, 97.5, 92.2 96.8, 99.0, 95.7

Mean 96.3, 89.9, 97.8 94.4, 90.3, 91.3 77.9, 62.4, 75.8 94.7, 90.1, 93.2 94.9, 91.5, 92.4
±SD ±1.6, ±7.6, ±1.7 ±2.8, ±7.9, ±5.3 ±12, ±18, ±15 ±2.3, ±7.9, ±5.6 ±2.2, ±7.4, ±5.2

Table 3. Performance of various dimensionality reduction techniques combined with SVM. Three
numbers in each cell represent the classification accuracy, the recall rate and the target coverage in
percentage.

Fluoroscopic
sequences PCA LLE LTSA LAP DMAP

1 92.6, 74.6, 97.9 92.0, 71.9, 97.3 87.9, 56.8, 97.0 87.6, 64.7, 89.2 90.9, 76.9, 91.5
2 94.5, 78.0, 99.1 91.4, 68.1, 95.8 89.0, 60.3, 94.2 87.3, 62.5, 86.3 93.7, 76.5, 97.5
3 94.4, 78.9, 97.8 91.9, 71.1, 95.1 88.7, 57.2, 96.1 89.0, 60.0, 94.2 94.0, 81.6, 94.6
4 94.0, 77.0, 98.3 91.5, 67.9, 96.1 88.2, 54.8, 96.6 88.5, 61.8, 92.4 93.1, 75.0, 96.9
5 97.0, 94.4, 97.3 94.5, 93.4, 92.6 88.1, 80.1, 88.0 89.8, 95.6, 82.4 94.3, 94.6, 91.6
6 96.7, 92.4, 99.1 86.9, 66.8, 98.7 76.8, 41.6, 96.6 96.6, 92.1, 99.0 93.1, 82.9, 99.0
7 92.2, 77.2, 98.4 95.0, 89.5, 94.9 90.9, 89.4, 84.5 93.7, 94.4, 89.1 96.4, 90.8, 98.2
8 96.8, 93.9, 97.0 95.6, 90.4, 97.0 78.0, 40.9, 93.7 96.7, 93.2, 97.3 96.3, 92.2, 97.0
9 94.7, 84.2, 96.4 95.6, 89.0, 95.1 89.9, 69.1, 92.8 95.0, 83.6, 98.3 92.6, 75.5, 97.0

10 96.5, 98.4, 95.8 95.2, 97.8, 94.3 78.1, 90.3, 76.6 92.8, 96.8, 91.4 96.4, 99.2, 95.0

Mean 94.9, 84.9, 97.7 93.0, 80.6, 95.7 85.6, 64.1, 91.6 91.7, 80.5, 92.0 94.1, 84.5, 95.8
±SD ±1.7, ±9.0, ±1.1 ±2.8, ±12.4, ±1.7 ±5.6, ±18, ±6.7 ±3.7, ±16, ±5.4 ±1.8, ±9.0, ±2.6

that the radiation beam will be turned off more frequently when it should be on, leading to a
prolonged treatment. At this point, we wish to point out that the three evaluation metrics used
here are not equally important in clinical sense. A false positive gating signal is much worse
clinically than a false negative one. Therefore, when comparing with two results, TC should
be given more weight than RR. It is comforting to see that in most cases, TC is in the upper
90% although RR seldom reaches 90%.

The reason for a lower RR is very complicated. It may be because the tumor cannot be
seen clearly in the fluoroscopic images and the ‘ground truth’ itself is not accurate. There
may be shape and size changes in the tumor as well as interfering movements of other organs
(particularly heart) during simulated treatment. These variations will be captured by PCA
even if the tumor is in the same location. Another potential issue is the increase of breathing
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amplitude during simulated treatment beyond that of the training set. Since these new images
are not represented in the training set, they may be mapped incorrectly in the PCA subspace.

From table 2, the average CA and TC values of the ANN and PCA combination are
greater than other combinations with the smallest standard deviation although the RR for
PCA with ANN is slightly lower than several other manifold learning methods with ANN.
Similarly, we can see from table 3 that the SVM and PCA combination performs better than
other combinations too. This suggests that for the gating problem, a linear representation of
the data using PCA might suffice for a good classification result with ANN or SVM.

Comparing table 2 with table 3, we can see that when PCA is used for dimensionality
reduction, there is a slight advantage of using ANN over SVM in all the three evaluation
metrics. In order to quantitatively assess the performance gain (if any) of ANN over SVM
when used with PCA, we performed a one-side paired t-test on three evaluation metrics
for the ten fluoroscopic sequences. The reason why we used this particular t-test is that
we are suspecting that ANN is better than SVM (hence one-side) and there is a one-to-one
correspondence between each entry in tables 2 and 3 since they came from the same sequence
in the same patient (hence paired). We rejected the null hypothesis for CA and RR under the
0.05 significance level (p-value: 0.024 and 0.006, respectively). This means that the gain of
ANN over SVM in terms of CA and RR is statistically significant. However, we cannot reject
the null hypothesis for TC (p-value: 0.405). Combining these results with those of Cui et al
(2008), we can say that ANN with PCA is better than the template-based approach in terms
of TC and RR (or DC).

Another important issue for real-time applications is the computational cost (or latency)
in the system. Training an ANN is more efficient than training SVM since SVM needs a
brute force search for the best combination of two parameters. The running time of training
ANN ten times is about 0.1521 s on an Intel Core 2 Duo 2.66 GHz Machine, while it takes
2.6332 s on training SVM to search the best parameters and learn the SVM decision boundary.
However, since the training process is done before treatment and only needs to be done once,
the training time may be of secondary concern. What is more relevant here is the running
time in the testing phase. For this particular data set, we estimated that the average running
time for ANN in combination with PCA is about 6.7 ms for each frame. For SVM combined
with PCA, it takes about 11 ms to process each frame. This is consistent with the previous
literature in that SVM in general is slower in terms of running time than ANN for a similar
generalization performance (Haykin 1994). One of the reasons is that there is no control over
the number of data samples selected by SVM for use as support vectors (during testing, the
running time of SVM grows linearly with respect to the number of support vectors). This is
in contrast to ANN, which has fixed computational complexity once a network architecture is
selected. In this respect, ANN is more appealing than SVM. At this stage, it seems that the
system latency for both ANN and SVM when combined with PCA is acceptable for real-time
gated radiotherapy.

5. Conclusions and future work

In this work, the gating problem was reformulated as a binary classification problem. Five
dimensionality reduction techniques and two machine learning classification approaches were
investigated. We found that PCA is in general superior compared to the other four nonlinear
manifold learning methods for our application, suggesting that our data might lie in a (roughly)
linear space. PCA combined with ANN leads to more accurate results in terms of CA, RR
than SVM although TC is similar for both methods. In particular, for the clinically meaningful
performance measure, we can achieve an upper 90% TC for most sequences in our data
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set. Both ANN and SVM when combined with PCA give a system latency within tolerance
for real-time applications. Therefore, for our future real-time gated lung radiotherapy, we
recommend PCA combined with ANN.

To overcome the potential problems mentioned in section 4, we may need to resort to
fluoroscopic images with implanted markers to get more accurate ground truth in the future.
In some cases, using a smaller ROI may reduce the amount of interfering movements of other
organs and increase classification accuracy. Some preprocessing such as low pass filtering
may help reduce the effects of background noise. In general, the issue of shape and size
changes in the tumor as well as irregular breathing patterns is more difficult to deal with. It is
obvious that PCA is sensitive to these changes since it is an area-based approach and works
directly with image intensity values. We plan to investigate other feature extraction techniques
or special-purpose image processing and computer vision algorithms in the future to overcome
this problem.
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