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Abstract

This paper presents a matrix factorization method for implementing orthonormal M-band wavelet reversible integer

transforms. Based on an algebraic construction approach, the polyphase matrix of orthonormal M-band wavelet

transforms can be factorized into a finite sequence of elementary reversible matrices that map integers to integers

reversibly. These elementary reversible matrices can be further factorized into lifting matrices, thus we extend the classical

lifting scheme to a more flexible framework.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For signal processing and image compression,
M-band wavelets have attracted considerable atten-
tion due to their ability to provide much more
freedom than the classical two-band wavelets, such
as the coexistence of orthogonality and linear phase
[1,2]. However, the increased degrees of freedom
make it challenging to construct general M-band
wavelets, and also difficult to efficiently implement
M-band wavelet transforms in the lifting scheme or
other fast algorithms.
e front matter r 2005 Elsevier B.V. All rights reserved
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As there are M � 1 high-pass wavelet filters and
only one low-pass scaling filter in an M-band
wavelet system, commonly a two-step construction
procedure is applied to reduce the design difficulties.
The first step is to design the scaling filter with
K-regularity [3,4], linear-phase [5], and other
properties [6,7]. Then in the second step, wavelet
filters are chosen to meet some special requirements
with the given scaling filter [5,3,8,9,4,10,11]. Since
the scaling filter and the wavelet filters are designed
separately and often only specific scaling filters are
studied, the two-step construction may not com-
pletely exploit the freedom provided by the general
M-band wavelets. The lifting scheme [12–14] offers
a new approach to design and efficiently implement
the classical two-band wavelet transforms. In
addition, wavelet transforms can be further im-
plemented with reversible integer mapping [15,16],
.
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which is essential for lossless source coding by
transformation. In [17–19], the lifting scheme is
directly generalized to M-band wavelets. In [20–22],
the polyphase transfer matrix for M-band wavelets
is first represented by the lattice structure or the LU
factorization, then is further decomposed into
lifting steps or ladder structures.

In [23] an algebraic method of solving constraint
equations is presented for construction of ortho-
normal M-band wavelets. The solution is obtained
via matrix decomposition. It is natural to factorize
the construction matrices further into lifting steps,
or into elementary reversible matrices that directly
map integers to integers, which is proposed in this
paper. We will be concerned with real filter banks
throughout the paper.

The rest of this paper is organized as follows. In
Section 2 we review some basic facts of the algebraic
construction method [23], and reversible integer
transforms [15,16,24]. Section 3 describes the main
results of our factorization for reversible integer
transforms, and in Section 4 we discuss the relations
with the lifting scheme. The paper is concluded in
Section 5.
2. Preliminary

In this section we recall some basic concepts
and results, which will be used in the subsequent
paper.
2.1. M-band wavelets

Suppose the filter bank matrix [1,25] of M-band
wavelets with length ML is A ¼ ½A0;A1; . . . ;AL�1�,
where Aj are M �M matrices with MX2 and LX2.
L is often called the overlapping factor [21,20]. The
first row of A is for the low-pass filter, and other
M � 1 rows are for high-pass filters of the wavelets.
Thus, the polyphase matrix [14,26] is

PðzÞ ¼ A0 þ A1z
�1 þ � � � þ AL�1z

�ðL�1Þ. (2.1)

The constraint conditions for an orthonormal (OR)
M-band filter bank with perfect reconstruction (PR)
property are as follows:

Ŝe ¼
ffiffiffiffiffiffi
M
p

e1 (low-pass and high-pass);

PPT ¼ I (OR);

QQT ¼ I (PR);

8><>: (2.2)
where

Ŝ ¼
XL�1
j¼0

Aj ; e ¼ ð1; 1; . . . ; 1ÞT; e1 ¼ ð1; 0; . . . ; 0Þ
T,

(2.3)

P ¼

A0 A1 � � � AL�1

A0 A1 � � � AL�1

� � � � � � � � � � � �

A0 A1 � � � AL�1

26664
37775,
(2.4)

Q ¼

AT
0 AT

1 � � � AT
L�1

AT
0 AT

1 � � � AT
L�1

� � � � � � � � � � � �

AT
0 AT

1 � � � AT
L�1

266664
377775.
(2.5)

For the cases of L ¼ 2 and L ¼ 3, the following
results have been proved in [23]:
�
 For the case of L ¼ 2, A ¼ ½A0; A1� satisfy (2.2) if
and only if they have the following decomposi-
tions:

A0 ¼ U
In0 0

0 0

� �
VT; A1 ¼ U

0 0

0 In1

" #
VT,

(2.6)

where n0 þ n1 ¼M, and U and V are orthogonal
matrices with UVTe ¼

ffiffiffiffiffiffi
M
p

e1.

�
 For the case of L ¼ 3, A ¼ ½A0; A1; A2� satisfy

(2.2) if and only if they have the decompositions
Ak ¼ USkVT; k ¼ 0; 1; 2, where

S0 ¼ diagðS; In0 ; 0; 0; 0Þ,

S1 ¼

0 0 0 0 �C

0 0 0 0 0

0 0 In1 0 0

0 0 0 0 0

C 0 0 0 0

2666666664

3777777775
,

S2 ¼ diagð0; 0; 0; In2 ;SÞ; S ¼ diagðs1; s2; . . . ; srÞ,

C ¼ diagðc1; c2; . . . ; crÞ; 0osi; cio1,

c2i þ s2i ¼ 1; 2rþ n0 þ n1 þ n2 ¼M, ð2:7Þ

and U and V are orthogonal matrices and satisfy
UðS0 þ S1 þ S2ÞV

Te ¼
ffiffiffiffiffiffi
M
p

e1.
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2.2. Reversible integer transform
An integer factor is defined as �1 for real
numbers. A triangular elementary reversible matrix

(TERM) is an upper or a lower triangular square
matrix with integer factor diagonal entries, and a
single-row elementary reversible matrix (SERM) is a
square matrix with integer factor diagonal entries
and only one row of off-diagonal entries that are
not all zeros. If all the diagonal entries are equal to
1, the matrix is called a unit TERM or a unit
SERM.

One of the important properties of elementary
reversible matrices is that we can use reversible
integer transforms to approximate them. For
example, let U ¼ ½uij � be an M �M upper TERM,
the linear transform y ¼ Ux can be approximated
by the following reversible integer transform:

yi ¼ uiixi þ ½
PM

j¼iþ1 uijxj�; i ¼ 1; 2; . . . ;M � 1;

yM ¼ uMM xM ;

(

where ½r� denotes the rounding arithmetic for any
real number r. Because uii is an integer factor that
does not change the magnitude, the output yi

are integers if the input xi are integers. Moreover,
xi can be recovered from yi in the order of
xM ;xM�1; . . . ;x1.

The following result shows that the normalized
matrices can be factorized into TERMs or SERMs,
which has been proved in [16].

Lemma 2.1. If an M �M matrix A satisfies

detðAÞ ¼ �1, then A has
�
 a TERM factorization: A ¼ PLU S0, where P is a

permutation matrix, L a unit lower TERM, U a

unit upper TERM, and S0 a SERM with nonzero

off-diagonal entries in the bottom row,

�

Table 1

2-Regular 3-band filter bank

h0;n h1;n h2;n

0.33838609728386 �0.11737701613483 0.40363686892892

0.53083618701374 0.54433105395181 �0.62853936105471

0.72328627674361 �0.01870574735313 0.46060475252131

0.23896417190576 �0.69911956479289 �0.40363686892892

0.04651408217589 �0.13608276348796 �0.07856742013185

�0.14593600755399 0.42695403781698 0.24650202866523
a SERM factorization: A ¼ PSMSM�1 � � �S1S0,
where P is a permutation matrix, Sm ðm ¼

M ;M � 1; . . . ; 1Þ unit SERMs with nonzero off-

diagonal entries in the mth row, and S0 a SERM

with nonzero off-diagonal entries in the bottom

row.

3. Factorizations

In this section, we give the TERM and the
SERM factorization of the polyphase matrix PðzÞ

of an orthonormal M-band filter bank A ¼

½A0;A1; . . . ;AL�1� for the cases of L ¼ 2 and L ¼ 3.
3.1. The case of L ¼ 2

For the case of L ¼ 2, by (2.6), the polyphase
matrix has the following form:

PðzÞ ¼ A0 þ A1z
�1 ¼ U

In0 0

0 IM�n0z
�1

" #
VT.

Because U and V are both orthonormal matrices,
detðUÞ ¼ �1, detðV Þ ¼ �1. By Lemma 2.1, U and V

have TERM factorization of form PLU S0 and
SERM factorization of form PSMSM�1 � � �S1S0.
The intermediate matrix

In0 0

0 IM�n0z
�1

" #

is equivalent to identity matrix, except for a
translation of the input signal corresponding to
the lower-right part. Thus, reversible integer trans-
forms can be implemented for M-band wavelets of
the case L ¼ 2.
Example 3.1 (2-Regular 3-band wavelets). For L ¼

2 and M ¼ 3, the regularity constraints can be
imposed to get the following filter bank [4,3,2,23] as
shown in Table 1.
For this filter bank the associated decompositions
as in (2.6) are as follows:

A0 ¼

0:3384 0:5308 0:7233

�0:1174 0:5443 �0:0187

0:4036 �0:6285 0:4606

2664
3775

¼ U

0 0 0

0 1 0

0 0 1

2664
3775VT,
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A1 ¼

0:2390 0:0465 �0:1459

�0:6991 �0:1361 0:4270

�0:4036 �0:0786 0:2465

2664
3775

¼ U

1 0 0

0 0 0

0 0 0

2664
3775VT,

where

U ¼

�0:2838 �0:8475 0:4485

0:8304 �0:4511 �0:3270

0:4794 0:2796 0:8318

2664
3775,

V ¼

�0:8419 �0:1210 0:5259

�0:1639 �0:8712 �0:4628

0:5142 �0:4758 0:7136

2664
3775.

It is easy to verify that U has the TERM
factorization: U ¼ L0U0S0, where

L0 ¼

1

�0:1057 1

2:8608 5:1901 1

264
375,

U0 ¼

1 �3:3187 0:4485

1 �0:2796

1

264
375,

S0 ¼

1

1

�2:8628 5:5105 1

264
375.

We can also factorize U into SERMs by factorizing
L0U0 into three SERMs, that is, L0U0 ¼ S3S2S1, so
we have the SERM factorization: U ¼ S3S2S1S0,
where

S3 ¼

1

1

3:4094 5:1901 1

264
375,

S2 ¼

1

�0:1057 1 �0:2796

1

264
375,

S1 ¼

1 �3:3187 0:4485

1

1

264
375.
Similarly, we have V ¼ eL0
eU0
eS0, where

eL0 ¼

1

�1:7847 1

3:0136 �3:9328 1

264
375,

eU0 ¼

1 2:1859 0:5259

1 0:4758

1

264
375,

eS0 ¼

1

1

�3:5024 �4:3866 1

264
375.

Of course, we may also give the SERM decomposi-
tion of V.

In summary, we have PðzÞ ¼ L0U0S0

diagðz�1; 1; 1ÞðeL0
eU0
eS0Þ

T, which is a reversible in-
teger factorization of PðzÞ.
3.2. The case of L ¼ 3

For the case of L ¼ 3, by (2.7), the polyphase
matrix has the following form:

PðzÞ ¼ A0 þ A1z�1 þ A2z
�2

¼ U

S �Cz�1

B

Cz�1 Sz�2

2664
3775VT,

where

B ¼

In0

In1z
�1

In2z
�2

264
375.

Noting that

M ¼

S �Cz�1

B

Cz�1 Sz�2

2664
3775

¼

S �Cz�1

I

Cz�1 Sz�2

2664
3775

I

B

I

2664
3775

and the transform with B can be implemented for
reversible integer mapping directly, we only need to
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consider how to factorize the matrix

S �Cz�1

Cz�1 Sz�2

" #

into lifting matrices. Noting that C, S, and C þ S

are all nonsingular, S2 þ C2 ¼ I , and SC ¼ CS,
and using the following useful equalities [14,16,27]:

A11 A12

A21 A22

" #
¼

I A12

A21 þ A22A�112 ðI � A11Þ A22

" #

�

I 0

�A�112 ðI � A11Þ I

" #

¼

I 0

A21A�111 A22 � A21A�111 A12

" #

�
A11 A12

0 I

" #
,

A11 0

A21 A22

" #
¼

A11 0

0 I

� �
I 0

A21 I

" #
I 0

0 A22

" #
,

A11 A12

0 A22

" #
¼

I 0

0 A22

" #
I A12

0 I

� �
A11 0

0 I

� �
,

A 0

0 B

� �
I C

0 I

� �
¼

I ACB�1

0 I

" #
A 0

0 B

� �
,

a 0

0
1

a

24 35 ¼ 1 0

1

a
� 1 1

24 35 1 1

0 1

" #

�
1 0

a� 1 1

" #
1 �

1

a
0 1

24 35,
¼

1 0

1

a
1

24 35 1 a� 1

0 1

" #

�
1 0

1 1

" #
1

1

a
� 1

0 1

24 35,
we can obtain many different reversible integer
factorizations. For the limitation of the paper
length, we here just present four of them
as follows.
1.
 The factorization with three TERMs:

S �Cz�1

Cz�1 Sz�2

" #

¼
I �Cz�1

ðI � SÞC�1z�1 Sz�2

" #
I 0

C�1ðI � SÞz I

" #

¼
I 0

ðI � SÞC�1z�1 Iz�2

" #
I �Cz�1

0 I

" #

�
I 0

C�1ðI � SÞz I

" #
.

2.
 The factorization with three TERMs and one
permutation matrix:

S �Cz�1

Cz�1 Sz�2

" #

¼
�Cz�1 S

Sz�2 Cz�1

" #
0 I

I 0

" #

¼
I S

ðS þ CS�1CÞz�2 þ CS�1z�1 Cz�1

" #

�
I 0

�S�1ðI þ Cz�1Þ I

" #
0 I

I 0

" #

¼
I 0

S�1z�2 þ CS�1z�1 �Iz�2

" #
I S

0 I

" #

�
I 0

�S�1ðI þ Cz�1Þ I

" #
0 I

I 0

" #
.

3.
 The factorization with four TERMs:

S �Cz�1

Cz�1 Sz�2

" #

¼
I I

0 Iz�1

" #
S � C �ðC þ SÞz�1

C Sz�1

" #

¼
I I

0 Iz�1

" #
I �ðC þ SÞ

X S

" #
I 0

Y Iz�1

" #
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¼
I I

0 Iz�1

" #
I 0

X I

" #
I �ðC þ SÞ

0 I

" #

�
I 0

Y Iz�1

" #
,

where

X ¼ C � SðC þ SÞ�1ðI � S þ CÞ,

Y ¼ ðC þ SÞ�1ðI � S þ CÞ.
4.
 The factorization with seven TERMs:

S �Cz�1

Cz�1 Sz�2

" #

¼
I 0

CS�1z�1 S�1z�2

" #
S �Cz�1

0 I

" #

¼
I 0

CS�1z�1 I

" #
I 0

0 S�1z�2

" #
I �Cz�1

0 I

" #

�
S 0

0 I

" #

¼
I 0

CS�1z�1 I

" #
I �CSz

0 I

" #
I 0

0 S�1z�2

" #

�
S 0

0 I

" #

¼
I 0

CS�1z�1 I

" #
I �CSz

0 I

" #
I 0

0 Iz�2

" #

�
S 0

0 S�1

" #
,

where

S 0

0 S�1

" #
¼

I 0

S�1 � I I

" #
I I

0 I

" #
I 0

S � I I

" #

�
I �S�1

0 I

" #

¼
I 0

�S�1 I

" #
I S � I

0 I

" #
I 0

I I

" #

�
I S�1 � I

0 I

" #
.

Thus, reversible integer transforms can be imple-
mented for M-band wavelets of the case L ¼ 3.
Example 3.2 (3-Regular 3-band wavelets). The ex-
ample filter bank of 3-regular 3-band in [2–4,23] can
be given by the following decompositions:

A0 ¼

0:2031 0:4232 0:7073

�0:4214 0:7247 0:0395

0:0284 �0:1610 �0:1081

2664
3775

¼ U

0:6807 0 0

0 1 0

0 0 0

2664
3775VT,

A1 ¼

0:4462 0:1986 �0:1772

�0:3270 �0:2744 0:3241

0:4675 �0:2401 0:4897

2664
3775

¼ U

0 0 �0:7326

0 0 0

0:7326 0 0

2664
3775VT,

A2 ¼

�0:0720 �0:0444 0:0473

�0:0681 �0:0420 0:0447

�0:4959 �0:3061 0:3255

2664
3775

¼ U

0 0 0

0 0 0

0 0 0:6807

2664
3775VT,

where

U ¼

�0:6948 0:7049 �0:1424

0:7192 0:6817 �0:1346

0:0022 0:1960 �0:9806

2664
3775,

V ¼

�0:6525 �0:1496 0:7429

0:3332 0:8238 0:4585

�0:6806 0:5467 �0:4877

2664
3775.

It is easy to verify that U ¼ L0U0S0 and
V ¼ eL0

eU0
eS0, where

L0 ¼

1

2:3217 1

11:6735 �1:6244 1

264
375,

eL0 ¼

1

1:3531 1

�1:7654 0:3222 1

264
375,
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U0 ¼

1 0:7157 �0:1424

1 0:1960

1

264
375,

eU0 ¼

1 �0:1139 0:7429

1 �0:5467

1

264
375,

S0 ¼

1

1

11:9021 �9:9760 1

264
375,

eS0 ¼

1

1

�2:2243 �0:0481 1

264
375.

The middle matrix M can be factorized into three
SERMs: M ¼ S3S1

eS3, where

M ¼

0:6807 �0:7326z�1

1

0:7326z�1 0:6807z�2

264
375,

S3 ¼

1

1

0:4359z�1 0 z�2

264
375,

S1 ¼

1 0 �0:7326z�1

1

1

264
375,

eS3 ¼

1

1

0:4359z 0 1

264
375.

In summary, we have PðzÞ ¼ L0U0S0S3S1
eS3

ðeL0
eU0
eS0Þ

T, which is a reversible integer factoriza-
tion of PðzÞ.
4. Relations with the lifting matrices

It has been proved in [14,19] that any biorthogo-
nal two-band or M-band wavelet transform can be
obtained using the lifting scheme [12,13]. This
corresponds to a factorization of the polyphase
matrix into a sequence of lifting matrices, dual
lifting matrices, and one diagonal scaling matrix.
For the two-band [12–14] or the M-band cases
[18,19], a lifting matrix is a lower triangular square
matrix whose diagonal elements are 1 and nonzero
nondiagonal elements are only in the first column,
which corresponds to modify the M � 1 high-pass
filters as the low-pass filter is fixed. A dual lifting
matrix is an upper triangular square matrix whose
diagonal elements are 1 and nonzero nondiagonal
elements are only in the first row, which corre-
sponds to modify the low-pass filter based on the
high-pass filters. In [28,29], a lifting matrix is defined
as a matrix whose diagonal elements are 1, and only
one nondiagonal element is nonzero. Generally, the
nonzero nondiagonal elements of a lifting matrix
can be located in any row or column other than the
first.

Here we show that a lifting matrix (or a dual
lifting matrix), whose nonzero nondiagonal ele-
ments are strictly located in the first column (or in
the first row), can be relaxed to be any elementary

reversible matrix such as a TERM or a SERM.
Obviously, a lifting matrix is a TERM or a SERM.
On the other hand, a TERM can be converted into a
sequence of SERMs by extracting each row
sequentially [16]. A SERM can be directly factor-
ized into a sequence of lifting matrices, or be
converted into a SERM corresponding to the first
row and two permutation matrices. A permutation
matrix can also be converted into lifting matrices
with nonzero nondiagonal elements in the first row
or the first column. The essence can be conveyed by
the following simple examples. Let

S ¼

1

1

a b 1 c d

1

1

26666664

37777775; P ¼

1

1

1

1

26664
37775.

Straightforward calculations verify that

S ¼ L1U1L2U2L3; S ¼ P13S1P13; P ¼ DðeL1
eU1Þ

2,

where

L1 ¼

1

1

1 1

1

1

26666664

37777775; U1 ¼

1 b c d

1

1

1

1

26666664

37777775,
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L2 ¼

1

1

�1 1

1

1

26666664

37777775,

U2 ¼

1 �b �c �d

1

1

1

1

26666664

37777775,

L3 ¼

1

1

a 1

1

1

26666664

37777775; P13 ¼

0 1

1

1 0

1

1

26666664

37777775,

S1 ¼

1 a b c d

1

1

1

1

26666664

37777775; D ¼

�1

1

1

1

26664
37775,

eL1 ¼

1

1

1 1

�1 1

26664
37775; eU1 ¼

1 �1 1

1

1

1

26664
37775.

5. Conclusion

In this paper, we first review an algebraic method
for construction of orthonormal M-band wavelets
and reversible integer transforms. Based on the
algebraic construction, the polyphase matrix of the
M-band wavelet transforms can be factorized into a
sequence of elementary reversible matrices that map
integers to integers. These elementary reversible
matrices can be further factorized into lifting
matrices, which allow us to generalize the lifting
scheme to a more flexible framework. Our future
work will focus on finding the minimal, with respect
to the number of lifting factors, factorization for M-
band wavelets with LX4.
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