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Abstract

This paper presents an algebraic approach to construct M-band orthonormal wavelet

bases with perfect reconstruction. We first derive the system of constraint equations of

M-band filter banks, and then an algebraic solution based on matrix decomposition is

developed. The structure of the solutions is presented, and practical construction proce-

dures are given. By using this algebraic approach, some well-known K-regular M-band

filter banks are constructed. The advantage of our approach is that more flexibility can

be achieved, and hence we can select the best wavelet bases for a general purpose or a

particular application.
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1. Introduction

It is well known that 2-band orthogonal wavelets [4,12] suffer from severe

constraint conditions, such as nontrivial symmetric (linear-phase) 2-band

orthogonal wavelets do not exist [3,8,9,17]. Biorthogonal wavelets, multiwav-

elets, and M-band wavelets are designed as alternatives for more freedom
and flexibility [3,9]. M-band wavelets have attracted considerable attentions

due to their richer parameter space to have a more flexible time-frequency til-

ing, to zoom in onto narrow band high frequency components in frequency re-

sponses, to give better energy compaction than 2-band wavelets [3,5,15]. Also,

there is a close relationship between M-band wavelets and FIR perfect recon-

struction filter banks [3,15,16,20,21]. The design of M-band wavelets is very

challenging because of the great number of parameters and increased degrees

of freedom, especially for larger M and longer length.
An M-band wavelet system consists of one scaling filter (or scaling function)

and M � 1 wavelet filters. Because most useful properties are only related to

the scaling filter, a typically two-step construction procedure is used. The first

step is to design the scaling filter carefully, and the second is to choose the

wavelet filters from the given scaling filter [7,15,17,19]. K-regularity, linear-

phase, interpolation, linear independence, local linearity, and other properties

on scaling functions are investigated in [1,2,7,14,15,17,18]. For designing wave-

let filters from the given scaling filter, polyphase decomposition [17], parauni-
tary factorization [7], and state-space characterization [15] are proposed. In [1]

some shuffling operators are presented to construct wavelet filters with linear-

phase and perfect reconstruction by using permutations of the scaling filter. In

[19] characteristic Haar matrix is applied to construct M-band wavelets with an

O(M) transform complexity, and in [11] the lifting scheme is extended to bior-

thogonal M-band filter banks. Cosine modulated design of the wavelets from

the scaling filter are described in [3,6,10].

A disadvantage of above two-step construction is that it overlooks the
greater variety in wavelet filters design, as only special cases of wavelet filters

are provided. Another disadvantage is that it focuses on design filter banks

with particular properties, and there is no scheme to construct general cases

of filter banks. Following the idea presented in [13] for biorthogonal wavelets

construction, in this paper we propose an algebraic approach to construct

M-band wavelets by solving constraint equations, which can partially over-

come above disadvantages of the classical two-step construction. With our ap-

proach, we can find the structures of the solutions and give practical
construction procedure. Moreover, we can construct innumerable wavelet

bases, among which we can select the best ones for practical applications.

Throughout this paper we use Z to denote the set of all integers. The symbol

I denotes the identity matrix of size implied in context. Sometimes we also use

Ip to denote the identity matrix of size p.
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2. Problem

Suppose that M P 3 and L P 2 are two fixed positive integers. Consider the

compactly supported M-band filter bank with length ML:

fhmn; 0 6 m 6 M � 1; 0 6 n 6 ML� 1g. ð1Þ
Given a discrete signal fsjgj2Z with finite energy, the decomposition and recon-

struction formulas are

tik ¼
X
j2Z

hijsjþMk; k 2 Z; i ¼ 0; 1; . . . ;M � 1 ð2Þ

and

~sj ¼
X
k2Z

XM�1

i¼0

hi;j�Mktik; j 2 Z; ð3Þ

respectively. The constraint conditions for an orthonormal M-band filter bank
with perfect reconstruction property are

• the low-pass and high-pass condition
PLM�1

j¼0 hij ¼
ffiffiffiffiffi
M

p
di0; i ¼ 0; 1; . . . ;

M � 1;

• the orthonormal condition
P

j2Zhijhr;jþMk ¼ dirdk0; k 2 Z; i; r ¼ 0; 1; . . . ;
M � 1;

• the perfect reconstruction condition sj ¼ ~sj; j 2 Z.

Define

Ak ¼

h0;Mk h0;Mkþ1 � � � h0;Mðkþ1Þ�1

h1;Mk h1;Mkþ1 � � � h1;Mðkþ1Þ�1

..

. ..
. . .

. ..
.

hM�1;Mk hM�1;Mkþ1 � � � hM�1;Mðkþ1Þ�1

2
6666664

3
7777775

for k = 0,1, . . . ,L � 1. Then the construction of an orthonormal M-band filter

bank with perfect reconstruction property is reduced to the following problem.

Problem MLW. Find L real M · M matrices A0,A1, . . . ,AL�1 such that

Se ¼
ffiffiffiffiffi
M

p
e1; PPT ¼ I ; QQT ¼ I ; ð4Þ

where

S ¼
XL�1

j¼0

Aj; e ¼ ð1; 1; . . . ; 1ÞT; e1 ¼ ð1; 0; . . . ; 0ÞT; ð5Þ
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P ¼

A0 A1 � � � AL�1

A0 � � � � � � AL�1

� � � � � � � � � � � �

A0 A1 � � � AL�1

2
6666664

3
7777775
; ð6Þ

Q ¼

AT
0 AT

1 � � � AT
L�1

AT
0 � � � � � � AT

L�1

� � � � � � � � � � � �

AT
0 AT

1 � � � AT
L�1

2
6666664

3
7777775
. ð7Þ

Obviously, this is a system of nonlinear matrix equations. Let Ak = UDkV

with U and V both orthogonal matrices, and Dk ¼ diagð0; Ink ; 0Þ,
n0 + n1 + � � � + nL�1 = M, nk P 0. Then it is easy to verify that

AkA
T
j ¼ AT

k Aj ¼ 0; j 6¼ k;
XL�1

k¼0

AT
k Ak ¼

XL�1

k¼0

AkA
T
k ¼ I ;

which implies that the orthonormal and perfect reconstruction conditions are

naturally satisfied. Notice that in such a case S = UVT, if we take U and V sat-

isfies that UV Te ¼ ffiffiffiffi
m

p
e1, then the low-pass and high-pass condition is satisfied.

One way to select such two orthogonal matrices is as follows:

(i) Find a Householder matrix H such that He ¼
ffiffiffiffiffi
M

p
e1.

(ii) Let V = HU for any given orthogonal matrix U.

Thus, we have proved the following theorem.

Theorem 2.1. Problem MLW is always solvable, and it has infinite solutions.

In addition, we can easily prove the following result:

Theorem 2.2. If {A0,A1, . . . ,AL�1} is a solution of Problem MLW, then the

matrix S defined by (5) is orthogonal, i.e., STS = SST = I.
Remark 2.1. Theorem 2.2 shows that to solve Problem MLW is in essence to

decompose an orthogonal matrix S, which satisfies the low-pass and high-pass
condition, into L matrices: S = A0 + A1 + � � � + AL�1, such that the orthonor-

mal condition and the perfect reconstruction condition are satisfied.



T. Lin et al. / Appl. Math. Comput. 172 (2006) 717–730 721
3. Construction

In this section we shall explore the structures of solutions to Problem MLW

for L = 2, 3, 4. As shown below, it seems very difficult to give the general solu-

tions to Problem MLW for L P 5.

3.1. The case of L = 2

First we consider the structures of solutions to Problem MLW for the case

of L = 2. To this end, we first give the following basic result, which plays a fun-

damental role in this paper and can be easily proved by using Singular Value

Decomposition Theorem.

Lemma 3.1. If two n · n matrices A and B satisfy that ATB = ABT = 0, then
there exist orthogonal matrices U and V such that

UTAV ¼
DA 0

0 0

" #
; DA ¼ diagðr1; . . . ; rrAÞ; r1 P � � � P rrA > 0;

UTBV ¼
0 0

0 DB

� �
; DB ¼ diagðs1; . . . ; srBÞ; s1 P � � � P srB > 0;

where rA = rankA, rB = rankB, and rA + rB 6 n.

Notice that in the case of L = 2, Problem MLW can be more precisely stated

as: to find two real M · M matrices A0 and A1 such that

ðA0 þ A1Þe ¼
ffiffiffiffiffi
M

p
e1; AT

0A0 ¼ A0A
T
1 ¼ 0;

AT
0A0 þ AT

1A1 ¼ A0A
T
0 þ A1A

T
1 ¼ I .

The following theorem immediately follows Lemma 3.1.

Theorem 3.2. For the case of L = 2, {A0,A1} is a solution of Problem MLW if

and only if the matrices have the following decompositions:

A0 ¼ U
In0 0

0 0

� �
V T; A1 ¼ U

0 0

0 In1

� �
V T; ð8Þ

where n0 + n1 = M, and U and V are orthogonal matrices with UV Te ¼
ffiffiffiffiffi
M

p
e1.
Remark 3.1. Theorem 3.2 provides us with a recipe for constructing the solu-

tion to Problem MLW with L = 2. In summary, the method is as follows:
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Step 1. Select two nonnegative integers n0 and n1 with n0 + n1 = M, and choose

an M · M orthogonal matrix U.

Step 2. Compute an M · M Householder matrix H such that He ¼
ffiffiffiffiffi
M

p
e1.

Step 3. Compute V = HU, and compute A0 and A1 as in (8).
3.2. The case of L = 3

For the case of L = 3 we have

Theorem 3.3. For the case of L = 3, {A0,A1,A2} is a solution of Problem MLW

if and only if the matrices have the decompositions Ak = USkV
T, k = 0, 1, 2,

where

S0 ¼ diag S; In0 ; 0; 0; 0
� �

;

S1 ¼

0 0 0 0 �C

0 0 0 0 0

0 0 In1 0 0

0 0 0 0 0

C 0 0 0 0

2
6666664

3
7777775
;

S2 ¼ diag 0; 0; 0; In2 ; Sð Þ;
S ¼ diag s1; s2; . . . ; srð Þ;
C ¼ diag c1; c2; . . . ; crð Þ;
0 < si; ci < 1; c2i þ s2i ¼ 1;

2r þ n0 þ n1 þ n2 ¼ M

and U and V are orthogonal matrices and satisfy that U S0 þ S1 þ S2ð ÞV Te ¼ffiffiffiffiffi
M

p
e1.
Proof. The proof of the sufficiency is trivial. Next we prove the necessity.

For the case of L = 3, Problem MLW can be stated as: to find three real

M · M matrices A0, A1, A2 such that

A0 þ A1 þ A2ð Þe ¼
ffiffiffiffiffi
M

p
e1;

AT
0A2 ¼ A0A

T
2 ¼ 0;

AT
0A1 þ AT

1A2 ¼ A0A
T
1 þ A1A

T
2 ¼ 0;

AT
0A0 þ AT

1A1 þ AT
2A2 ¼ A0A

T
0 þ A1A

T
1 þ A2A

T
2 ¼ I .

8>>><
>>>:

ð9Þ

By Lemma 3.1 it follows AT
0A2 ¼ A0A

T
2 ¼ 0 that there exist two orthogonal

matrices U0 and V0 such that
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UT
0A0V 0 ¼

D0 0 0

0 0 0

0 0 0

2
664

3
775; UT

0A2V 0 ¼

0 0 0

0 0 0

0 0 D2

2
664

3
775; ð10Þ

where D0, D2 are diagonal matrices with positive diagonal entries.

Let

UT
0A1V 0 ¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
664

3
775. ð11Þ

Substituting (10) and (11) into AT
0A1 þ AT

1A2 ¼ A0A
T
1 þ A1A

T
2 ¼ 0 we have

A11 ¼ 0; A12 ¼ 0; A21 ¼ 0; A23 ¼ 0; A32 ¼ 0;

A33 ¼ 0; D0A13 þ AT
31D2 ¼ 0; D0A

T
31 þ A13D2 ¼ 0: ð12Þ

Thus, let the singular value decomposition of A22 be UT
1A22V 1 ¼ D1, and let

U = U0diag(I,U1, I), V = V0diag(I,V1, I), then we have UTA0V ¼ UT
0A0V 0,

UTA2V ¼ UT
0A2V 0, and

UTA1V ¼

0 0 A13

0 D1 0

A31 0 0

2
664

3
775.

Consequently, this, together with (12) and the last two equations of (9), gives
rise to

D1 ¼ I ; A13 ¼ �D�1
0 AT

31D2; A31D2
0 ¼ D2

2A31; ð13Þ

D2
0 þ AT

31A31 ¼ I ; D2
2 þ A31A

T
31 ¼ I ð14Þ

from which we can prove that

(a) D0 and D2 have at least one equal diagonal entry.

(b) Suppose that D0 ¼ diagðr1; . . . ; rl; . . . ; rn0Þ;D2 ¼ diagðs1; . . . ; sm; . . . ; sn2Þ,
where r1 = � � � = rl = s = s1 = � � � = sm and ri, sj 5 s if i > l, j > m, and let

A31 ¼
X 11 X 12

X 21 X 22

� �
, then
(1) when s = 1, X11 = 0, X12 = 0, X21 = 0;

(2) when 0 < s < 1, l = m, X 11X T
11 ¼ X T

11X 11 ¼ c2I , X12 = 0, and X21 = 0,

where c2 = 1 � s2.
Based on the above properties of D0, D2 and A31, if they satisfy (13) and

(14), there exist two permutation matrices P and Q such that
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PTD0P ¼ diag s1Ir1 ; s2Ir2 ; . . . ; slIrl ; In0
� �

; r1 þ r2þ � � �þ rl þ n0 ¼ rankðA0Þ;
QTD2Q¼ diag In2 ; s1I r1 ; s2Ir2 ; . . . ; slIrl

� �
; r1þ r2þ �� �þ rlþ n2 ¼ rankðA2Þ;

QTA31P ¼ diag 0;X 11;X 22; . . . ;X ll

� �
; X T

iiX ii ¼ ð1� s2i ÞIri ;
0< si < 1; i¼ 1; . . . ;l.

Thus, the necessity immediately follows. h
Remark 3.2. Based on Theorem 3.3, we can construct the solution to Problem
MLW with L = 3 as follows:

Step 1. Select three nonnegative integers r, n0 and n2 with 2r + n0 + n2 6 M

and 2r real numbers si and ci with 0 < si, ci < 1 and s2i þ c2i ¼ 1,

i = 1,2, . . . , r, let n1 = M � 2r � n0 � n2, and choose an M · M orthog-

onal matrix U.

Step 2. Compute an M · M Householder matrix H such that He ¼
ffiffiffiffiffi
M

p
e1.

Step 3. Construct S0, S1, S2 as in Theorem 3.3 and compute V = HUS, where
S = S0 + S1 + S2.

Step 4. Compute Ak = USkV for k = 0, 1, 2.
3.3. The case of L = 4

Finally, we consider the case of L = 4. In this case, similar to the proof of

Theorem 3.3 we can prove the following theorem.

Theorem 3.4. For the case of L = 4, {A0,A1,A2,A3} is a solution of Problem

MLW if and only if the matrices have the decompositions Ak = USkV
T, k = 0, 1,

2, 3, where

S0 ¼ diag D0; 0; 0ð Þ; S1 ¼
B11 B12 B13

B21 B22 0

B31 0 0

2
64

3
75; B22 ¼

D1 0

0 0

" #
;

S3 ¼ diag 0; 0;D3ð Þ; S2 ¼
0 0 C13

0 C22 C23

C31 C32 C33

2
64

3
75; C22 ¼

0 0

0 D2

" #
;

and moreover, U and V are orthogonal matrices and satisfy that

U S0 þ S1 þ S2 þ S3ð ÞV Te ¼
ffiffiffiffiffi
M

p
e1, Di(i = 0,1,2,3) are diagonal matrices with

positive entries, n0 + n3 6M, n1 + n2 6M � n0 � n3, ni = size(Di), while subma-

trices Bij, Cij, Di satisfy the following system of 18 matrix equations:
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C13 ¼�D�1
0 BT

31D3; B13 ¼�D0C
T
31D

�1
3 ; C33 ¼�B31C

T
31D

�1
3 ;

B11 ¼�D�1
0 BT

31C31; C23 ¼� B21C
T
31þB22C

T
32

� �
D�1

3 ;

B12 ¼�D�1
0 BT

21C22þBT
31C32

� �
;

CT
31F BD2

3� D2
0þBT

21B21þBT
31B31

� �
CT

31�BT
21B22C

T
32 ¼ 0;

D2
0F CBT

31�BT
31 C31C

T
31þC32C

T
32þD2

3

� �
�BT

21C22C
T
32 ¼ 0;

CT
32F BD2

3�BT
22B22C

T
32þCT

22B21D�2
0 BT

31D
2
3�BT

22B21C
T
31 ¼ 0;

D2
0F CBT

21�BT
21C22C

T
22�BT

31C32C
T
22þD2

0C
T
31D

�2
3 C32BT

22 ¼ 0;

CT
32F BC31þBT

22B21þCT
22B21D�2

0 BT
31C31 ¼ 0;

B31F CBT
21þC32C

T
22þB31C

T
31D

�2
3 C32BT

22 ¼ 0;

CT
31F BC31þBT

21B21þBT
31B31þD2

0 ¼ I ;

B31F CBT
31þC31C

T
31þC32C

T
32þD2

3 ¼ I ;

CT
32C32þBT

22B22þCT
22C22þ CT

22B21þCT
32B31

� �
D�2

0 BT
21C22þBT

31C32

� �
¼ I ;

B21BT
21þB22BT

22þC22C
T
22þ B21C

T
31þB22C

T
32

� �
D�2

3 C31BT
21þC32BT

22

� �
¼ I ;

D2
3F BD2

3þC31 D2
0þBT

31B31

� �
CT

31þ C31BT
21þC32BT

22

� �
B21C

T
31þB22C

T
32

� �
¼D2

3;

D2
0F CD2

0þBT
31 D2

3þC31C
T
31

� �
B31þ BT

21C22þBT
31C32

� �
CT

22B21þCT
32B31

� �
¼D2

0;

where

F B ¼ I þ B31D�2
0 BT

31; F C ¼ I þ CT
31D

�2
3 C31.

Although it seems not easy to find solutions to the above system, from it we

can derive some explicit formulas to construct filter banks for small M. As an

application of the above result, consider the case ofM = 4, and assume that the

matrices Si in Theorem 3.4 have the following forms:
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where n0 = n1 = n2 = n3 = 1, a > 0, b > 0, c > 0, d > 0. Straightforward calcula-

tions lead to the construction of those matrices Si as follows:

Step 1. Choose four numbers d, c, b, c41 with 0 < d, c, b, c41 < 1 and

b2 P d2 þ c241;
Step 2. Find the other numbers by the following formulas:

a ¼ dc
b
; b2

41 ¼
a2ðb2 � d2 � c241Þ

d2 þ c241
; c242 ¼

ð1� b2Þðd2 þ c241Þ
b2

;

b2
31 ¼

ð1� c2Þða2 þ b2
41Þ

c2
; c43 ¼ � cb31b41

a2 þ b2
41

; b21 ¼ � bc41c42
d2 þ c241

;

c14 ¼ � db41

a
; b14 ¼ � ac41

d
; c24 ¼ � b21c41 þ bc42

d
;

b13 ¼ � b31cþ b41c43
a

; c34 ¼ � b31c41
d

; b12 ¼ � b41c42
a

;

c44 ¼ � b41c41
d

; b11 ¼ � b41c41
a

:

4. Examples

In order to show the practicability of our algebraic construction of M-band
wavelets, some well-known K-regular M-band wavelets [15,17] are constructed

by using our method.

Example 4.1. 2-regular 3-band wavelets. For L = 2 and M = 3 we can impose

the regularity constraints on the solutions of Problem MLW to obtain the well-

known filter bank (Table 1) [17].

For this filter bank the associated decompositions as in Theorem 3.2 are
Table 1

2-Regular 3-band filter bank

h0,n h1,n h2,n

0.33838609728386 �0.11737701613483 0.40363686892892

0.53083618701374 0.54433105395181 �0.62853936105471

0.72328627674361 �0.01870574735313 0.46060475252131

0.23896417190576 �0.69911956479289 �0.40363686892892

0.04651408217589 �0.13608276348796 �0.07856742013185

�0.14593600755399 0.42695403781698 0.24650202866523
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A0 ¼
0.3384 0.5308 0.7233

�0.1174 0.5443 �0.0187

0.4036 �0.6285 0.4606

2
4

3
5 ¼ U

0 0 0

0 1 0

0 0 1

2
4

3
5V T;

A1 ¼
0.2390 0.0465 �0.1459

�0.6991 �0.1361 0.4270

�0.4036 �0.0786 0.2465

2
4

3
5 ¼ U

1 0 0

0 0 0

0 0 0

2
4

3
5V T;

where

U ¼
�0.28 �0.85 0.45

0.83 �0.45 �0.33

0.48 0.28 0.83

2
4

3
5; V ¼

�0.84 �0.12 0.53

�0.16 �0.87 �0.46

0.51 �0.48 0.71

2
4

3
5.
Example 4.2. 3-regular 3-band wavelets. Using Theorem 3.3, the example fil-
ter bank of 3-regular 3-band in [17] can be given by the following

decompositions:

A0 ¼
0.2031 0.4232 0.7073

�0.4214 0.7247 0.0395

0.0284 �0.1610 �0.1081

2
64

3
75 ¼ U

0.6807 0 0

0 1 0

0 0 0

2
64

3
75V T;

A1 ¼
0.4462 0.1986 �0.1772

�0.3270 �0.2744 0.3241

0.4675 �0.2401 0.4897

2
64

3
75 ¼ U

0 0 �0.7326

0 0 0

0.7326 0 0

2
64

3
75V T;

A2 ¼
�0.0720 �0.0444 0.0473

�0.0681 �0.0420 0.0447

�0.4959 �0.3061 0.3255

2
64

3
75 ¼ U

0 0 0

0 0 0

0 0 0.6807

2
64

3
75V T;

where

U ¼
�0.6948 0.7049 �0.1424

0.7192 0.6817 �0.1346

0.0022 0.1960 �0.9806

2
64

3
75;

V ¼
�0.6525 �0.1496 0.7429

0.3332 0.8238 0.4585

�0.6806 0.5467 �0.4877

2
64

3
75.
Example 4.3. 4-regular 4-band wavelets. The 4-regular 4-band wavelet matrix

(Table 2) is constructed by using the scaling filter in [15] and the paraunitary

factorization method in [7] (with rank-4 DCT for its characteristic Haar

matrix).



Table 2

4-Regular 4-band filter bank

h0,n h1,n h2,n h3,n

0.0857130200 �0.1045086525 0.2560950163 0.1839986022

0.1931394393 0.1183282069 �0.2048089157 �0.6622893130

0.3491805097 �0.1011065044 �0.2503433230 0.6880085746

0.5616494215 �0.0115563891 �0.2484277272 �0.1379502447

0.4955029828 0.6005913823 0.4477496752 0.0446493766

0.4145647737 �0.2550401616 0.0010274000 �0.0823301969

0.2190308939 �0.4264277361 �0.0621881917 �0.0923899104

�0.1145361261 �0.0827398180 0.5562313118 �0.0233349758

�0.0952930728 0.0722022649 �0.2245618041 0.0290655661

�0.1306948909 0.2684936992 �0.3300536827 0.0702950474

�0.0827496793 0.1691549718 �0.2088643503 0.0443561794

0.0719795354 �0.4437039320 0.2202951830 �0.0918374833

0.0140770701 0.0849964877 0.0207171125 0.0128845052

0.0229906779 0.1388163056 0.0338351983 0.0210429802

0.0145382757 0.0877812188 0.0213958651 0.0133066389

�0.0190928308 �0.1152813433 �0.0280987676 �0.0174753464
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Applying Theorem 3.4, we can also construct this filter bank by the

following decompositions:

Ak ¼ USkV T; k ¼ 0; 1; 2; 3;

where

S0 ¼

1.0000 0 0 0

0 0.7940 0

0 0 0.2891 0

0 0 0 0

2
664

3
775;

S1 ¼

0 0 0 0

0 �0.0681 �0.0651 0.5935

0 0.4959 0.4639 0.2064

0 �0.3152 0.8186 0

2
664

3
775;

S2 ¼

0 0 0 0

0 0 0 0.0911

0 0 0 �0.6500

0 �0.1716 �0.1639 0.3487

2
664

3
775;

S3 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0.2296

2
664

3
775;
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U ¼

�0.0890 �0.8479 �0.4983 �0.1572

0.1717 0.0031 0.2636 �0.9492

�0.0339 0.5267 �0.8172 �0.2314

�0.9805 0.0593 0.1197 �0.1439

2
6664

3
7775;

V ¼

�0.2147 0.0917 �0.8907 �0.3900

0.6595 �0.3911 0.0797 �0.6370

�0.7146 �0.4880 0.2984 �0.4028

0.0917 �0.7749 �0.3335 0.5290

2
6664

3
7775.
5. Conclusion

In this paper we propose an algebraic approach to construct M-band ortho-

normal wavelet bases with perfect reconstruction. The structure of solutions to

M-band filter banks is presented, and practical construction procedures are

given. We also give some examples to show how to construct K-regular

M-band filter banks by using our algebraic approach. Future work is how to

construct longer filter banks, how to integrate useful properties such as lin-

ear-phase, and how to select the best wavelet bases for image compression.
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