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Abstract—Recently, manifold learning has been widely exploited in pattern recognition, data analysis, and machine learning. This paper

presents a novel framework, called Riemannian manifold learning (RML), based on the assumption that the input high-dimensional data

lie on an intrinsically low-dimensional Riemannian manifold. The main idea is to formulate the dimensionality reduction problem as a

classical problem in Riemannian geometry, that is, how to construct coordinate charts for a given Riemannian manifold? We implement

the Riemannian normal coordinate chart, which has been the most widely used in Riemannian geometry, for a set of unorganized data

points. First, two input parameters (the neighborhood size k and the intrinsic dimension d) are estimated based on an efficient simplicial

reconstruction of the underlying manifold. Then, the normal coordinates are computed to map the input high-dimensional data into a low-

dimensional space. Experiments on synthetic data, as well as real-world images, demonstrate that our algorithm can learn intrinsic

geometric structures of the data, preserve radial geodesic distances, and yield regular embeddings.

Index Terms—Dimensionality reduction, manifold learning, manifold reconstruction, Riemannian manifolds, Riemannian normal

coordinates.

Ç

1 INTRODUCTION

IN appearance-based object recognition, a 64� 64 image is
directly represented as a vector in a 4,096-dimensional

vector space. Obviously, this high-dimensional vector space
is too sparse to allow any efficient processing and analysis.
A typical way to circumvent “the curse-of-dimensionality”
problem [1] is to use dimensionality reduction techniques. The
purpose of dimensionality reduction is to map a set of high-
dimensional data into a low-dimensional space while
preserving the intrinsic structure in the data. In pattern
recognition, dimensionality reduction serves as an auto-
matic-learning approach to feature extraction by combining
all important cues (for example, shape, pose, and lighting
for image data) into a unified framework. Essentially,
dimensionality reduction offers an efficient approach for
redundancy removal or data reduction. The low-dimen-
sional representation of high-dimensional data has been
regarded as a central problem in data analysis [2]. Due to
the pervasiveness of high-dimensional data, dimensionality
reduction techniques have found widespread use in many
applications such as pattern recognition, data analysis, and
machine learning. Among the family of dimensionality
reduction approaches, manifold learning1 algorithms have
attracted extensive attention recently due to their nonlinear
nature, geometric intuition, and computational feasibility.

1.1 Previous Work

Classical linear dimensionality reduction methods such as
the principal component analysis (PCA) [3], [4], multidimen-
sional scaling (MDS) [5], and linear discriminant analysis
(LDA) [6] can only deal with flat euclidean structures. They
fail to discover the curved or nonlinear structures of the input
data. Different nonlinear extensions of PCA and MDS have
been proposed, including self-organizing maps (SOMs) [7],
principal curves [8], [9], autoencoder neural networks [10],
and generative topographic maps (GTMs) [11]. However,
these methods often suffer from the difficulties in designing
cost functions or tuning too many free parameters. Moreover,
most of these methods are computationally expensive, thus
limiting their utility in high-dimensional data sets. Kernel-
based extensions [12] such as the kernel PCA (KPCA) and
kernel Fisher discriminant analysis (KFD) provide new
means to perform PCA and LDA in an implicit higher
dimensional feature space.

A large number of nonlinear manifold learning methods
have been proposed recently, including isometric feature
mapping (ISOMAP) [13], [14], [15], locally linear embedding
(LLE) [16], [17], Laplacian eigenmaps [18], [19], Hessian
eigenmaps [20], semidefinite embedding (SDE) [21], mani-
fold charting [22], local tangent space alignment (LTSA) [23],
diffusion maps [24], [25], [2], and conformal eigenmaps [26].
The major algorithms are listed chronologically in Table 1.
The basic assumption is that the input data lie on or close to a
smooth low-dimensional manifold [27]. Each manifold
learning algorithm attempts to preserve a different geome-
trical property of the underlying manifold. Local approaches
such as LLE [16], [17], Laplacian eigenmaps [18], [19], and
LTSA [23] aim to preserve the proximity relationship among
the data. They are also called spectral embedding methods [21],
as the low-dimensional embedding is reduced to solving a
sparse eigenvalue problem under the unit covariance con-
straint. However, due to this imposed constraint, the aspect
ratio is lost, and the global shape of the embedding data
cannot reflect the underlying manifold. In contrast, global
approaches like ISOMAP [13] aim to preserve the metrics at
all scales, hence giving a more faithful embedding. However,
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1. Throughout this paper, manifold learning refers to a large family of
nonlinear dimensionality reduction methods based on the assumption that
the input data are sampled from a smooth manifold. It may have other
meanings. For instance, in [46], manifold learning is concerned with the
problem of constructing a simplicial complex to approximate the under-
lying manifold. More generally, manifold learning can be defined as a
process that automatically learns the geometric and topological properties
of a given manifold.
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ISOMAP, which is based on the rigid constraint of isometric
mapping, can only be applied to intrinsically flat manifolds,
for example, 2D developable surfaces (cylinders, cones, and
tangent surfaces). ISOMAP first computes the shortest path
distances between all pairs of points on the manifold and then
applies MDS to the distance matrix. Both the distance
computation and MDS are computationally expensive.

1.2 Manifold Assumption

Most manifold learning algorithms assume that the input
data resides on or close to a low-dimensional manifold
embedded in the ambient space. For most applications, the
data is generated by continuously varying a set of parameters.
Often, the number of parameters is not very large. Otherwise,
there will not be much benefit from dimensionality reduction.
For example, a set of face images can be captured by varying
the face pose, scale, position, and lighting conditions.
Following the study in [27], here, we present an explicit
representation of the underlying manifold on which the face
images lie. This representation is obtained by considering a
simple geometric imaging model (Fig. 1a) to acquire face
images. For simplicity, only varying poses and lighting
conditions are considered in this model, as they are the most
important factors in face recognition. This model may be
adapted to the image data of other objects (for example, cars)
if similar imaging conditions are encountered.

We model the human head as the unit sphere S2, where
the human face is on the frontal hemisphere. Different poses
are obtained by moving the camera while the human face is
fixed. We require that the distance from the camera to the
face and the focal length of the camera are fixed, so the
acquired images have similar scales. The optical axis of the

camera is set to pass through the center of the sphere. In
order to capture rotated face images on the image plane, the
camera is allowed to have some degrees of freedom to
rotate around its optical axis. The lighting is modeled by a
point light source far away from the sphere. Under these
settings, the face data is sampled from a five-dimensional
manifold, which is homeomorphic to

M ¼ ðP;Q; eÞjP 2 S2; Q 2 S2; e 2 S1
� �

; ð1Þ

whereP andQ are two intersection points onS2 by the optical
axis of the camera and the light ray, respectively, and e is a
unit vector indicating the planar rotation angle of the camera.
If the illumination variation is ignored, a 3D manifold may be
generated

M 0 ¼ ðP; eÞjP 2 S2; e 2 S1
� �

: ð2Þ
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TABLE 1
Major Manifold Learning Algorithms

Fig. 1. Manifold assumption. (a) A geometric imaging model for face

image data of one person. (b) A vector bundle model for face images of

multiple persons (a, b, c, d, and e).



This manifold can be conceived as the earth running on a
circular orbit in the four-dimensional space-time.

For face images of multiple persons, a vector bundle is
suitable to model the relation between interperson and
intraperson variation (Fig. 1b). Each fiber (shown in Fig. 1b
as a curve for visualization) represents the face data manifold
of one person, and the base manifoldM (shown in Fig. 1b as a
surface) collects the face images of all persons in a standard
setting (such as the frontal view, frontal illumination, and
natural facial expression). In face recognition, a new test
sample can be projected from the total space E (formed by
gluing together all the face image manifolds of each person)
onto the base M in order to remove intraperson variation,
provided that the projection map � : E !M has been
learned. It is important to point out that both the total
space E and the base M are manifolds. Therefore, manifold
learning algorithms can be applied to a set of face image data
of multiple persons in face recognition.

In general, the manifold assumption may not hold for some
complex data sets acquired from the real world. Nevertheless,
this assumption has been widely exploited in practice. First, it
is still possible to approximate the true data model as a
manifold by considering only a small set of significant factors.
Second, the popular manifold assumption can greatly
simplify the problem by exploiting the classical frameworks
of differentiable manifolds and Riemannian geometry.

In the remainder of this paper, we assume that the input
data lie on a d-dimensional Riemannian manifold M
embedded in a euclidean space Rn. The Riemannian metric
on M is induced from the standard euclidean inner product
in Rn. Mathematically, Nash proved that every Riemannian
manifold M can be isometrically embedded into some
euclidean space Rm [35]. This theorem reduces the study of
Riemannian manifolds to the study of submanifolds of
euclidean spaces.

1.3 The Proposed Framework

In this paper, we propose a general framework called
Riemannian manifold learning2 (RML). The dimensionality
reduction problem is formulated as constructing coordinate
charts for a Riemannian manifold. One of the most widely
used is the (Riemannian) normal coordinate chart, which was
introduced by Riemann in his famous 1854 lecture [28].
Riemannian normal coordinates are a vital tool for calcula-
tions in Riemannian geometry. One advantage is that normal
coordinates can preserve geodesic metrics to a certain extent
if the complete preservation of the metrics is not possible. The
metric preserving property is a cornerstone in geometry and
also a desirable feature for dimensionality reduction. In
supervised or unsupervised classification, better preserving
the metrics often leads to better results in the reduced low-
dimensional space. Particularly, in normal coordinates,
geodesic distances on each radial geodesic curve emanating
from the coordinate origin can be faithfully preserved. On the
other hand, distances between two radial geodesic curves can
freely stretch or shrink to fit this mapping. Fig. 2a provides an

example of radial geodesic curves, and Fig. 2b presents the
basic idea of normal coordinates. These radial geodesic
curves play a key role in unfolding a curved manifold onto a
flat space. This is very similar to the role of an umbrella
skeleton when we open an umbrella. Because of this set of
radial geodesic curves, which is a “skeleton” of the manifold,
normal coordinates can preserve the intrinsic geometric
structures with minimal distortions.

This paper presents a novel algorithm for manifold
learning based on the calculations of Riemannian normal
coordinates. This algorithm has a number of desirable
properties and overcomes several problems in previous work
reported in the literature:

1. The metric preserving problem. ISOMAP attempts to
preserve geodesic distances of all pairs of points on
the manifold. For intrinsically flat manifolds of zero
Gaussian curvature, such as the well-known “Swiss
roll” data (Fig. 3a), ISOMAP yields the ideal
embedding by isometrically unfolding the curved
data onto a planar region (Fig. 3b). However, for
general manifolds with a nonzero Gaussian curva-
ture (for example, a sphere), ISOMAP fails to
perform the isometric mapping onto a flat euclidean
space, as Gaussian curvature is isometry invariant.
On the contrary, global metric information is totally
lost in those spectral embedding methods under the
unit variance constraint. For the example of Swiss
roll data, spectral methods tend to generate an
embedding into a square region (Fig. 3c) or even
sometimes yield unpredictable irregular results
(Fig. 3d). For pattern recognition applications, large
differences in global shape and aspect ratios pose
serious threats to any classifier (for example, (KNN)),
because neighborhood relationship is changed
greatly. Mathematically, the metric preserving pro-
blem is of paramount importance in Gaussian
intrinsic geometry and Riemannian geometry. Com-
pared with ISOMAP and spectral methods, the
proposed RML can preserve radial geodesic dis-
tances, give a more faithful representation of the
data’s global structure, and achieve a trade-off
between the rigid constraint of isometry and the
deficiency of global metrics.

2. The cost averaging problem. Previous methods based
on global cost optimization attempt to average the cost
among all data points, thus preventing the correct
unfolding in large deformation areas. For instance, the
boundary areas of a punctured sphere (Fig. 4a) often
shrink into a circular curve by using Hessian eigen-
maps or LTSA (Fig. 4b). This shrinkage significantly
decreases the global cost but yields incorrect over-
lapping. Our algorithm computes the embedding by
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2. Although several existing methods mentioned Riemannian manifolds
in their papers, their proposed algorithms essentially had little connection
with Riemannian geometry. This work, together with [32], points out that
the manifold learning problem can be translated into the mathematical
problem of constructing coordinate charts for the manifold, thus unifying
various ideas within a common mathematical framework. In this paper,
only the Riemannian normal coordinate chart is implemented, but other
coordinate charts can also be employed.

Fig. 2. (a) Radial geodesic curves on a surface. (b) Charting a sphere

with Riemannian normal coordinates on the tangent plane.



using a local optimization procedure for each point,
thus avoiding this cost averaging problem.

3. The incremental-learning problem. Most manifold
learning methods operate in a “batch” mode, in which
low-dimensional coordinates of all data points are
computed simultaneously. This batch mode cannot
handle the problem of out-of-sample extension when
new data points become available. Incremental learn-
ing is essential for practical applications (such as
pattern recognition), where new test samples need to
be mapped into the same low-dimensional embed-
ding space. Recently, out-of-sample extensions for
ISOMAP, LLE, and eigenmaps are proposed in [15],
[29], [30], [31]. Our algorithm is essentially incremen-
tal learning, since each time, we compute the embed-
ding coordinates for one new data point.

4. The global optimization problem. Most existing algo-
rithms aim to solve a global optimization problem to
obtain the low-dimensional representation of all data
points simultaneously. Commonly, these global opti-
mizationproblems are very challenging to solve, or the
computational load is extremely heavy. For example,
ISOMAP solves the global optimization by using
MDS, which is very slow. Several methods based on
semidefinite programming are also computationally
demanding. In eigenmaps methods, a typical trick is to
impose a unit variance constraint, thus reducing the
optimization to an eigenvalue problem that can be
efficiently solved. However, this imposed constraint
leads to the first problem mentioned above. In
contrast, our algorithm divides the global embedding
problem into multiple local optimization steps, which
can be easily and efficiently solved.

The study of Brun et al. [32] is the most closely related to
our work, which is also based on the concept of Riemannian
normal coordinates. Their method achieved good results on
three synthetic data sets. However, densely sampled data sets
are required in their algorithm in order to calculate geodesic
distances and directions. For example, a “Swiss roll” data set
of 2,000 points is used in their experiments, whereas

commonly 800 or 1,000 points are enough for other methods.
In addition, their method cannot handle the data sets with
holes, for example, the “Swiss hole” data set. In contrast, our
proposed algorithm overcomes these problems.

The main contributions of this paper include the following:
1) It provides a manifold charting algorithm that efficiently
computes Riemannian normal coordinates for a d-dimen-
sional Riemannian manifold M. The calculation of geodesic
curves can also be useful to many other geometric problems.
2) It provides an algorithm that adaptively selects the
neighborhood size ki for each data point xi and reliably
estimates the intrinsic dimension d. 3) It provides a thorough
overview of prior work and a detailed comparison between
the proposed RML and other algorithms.

It is important to state, at the outset, that the algorithm
presented in this paper will not attempt to deal with two
problems that plague any manifold learning algorithm: noise
and undersampling. From a practical point of view, a manifold
learning algorithm must be able to address both problems
when dealing with real data sets. However, given arbitrary
and unknown geometry and topology, the problem of
manifold learning from noiseless and sufficiently dense data
is still a very difficult challenge. The proposed algorithm may
be thought of as a first step, and the ultimate goal would be to
extend the framework to more realistic and challenging cases
that involve these two problems.

1.4 Organization

The paper is organized as follows: We begin with a brief
review of mathematical preliminaries in Section 2. In
Section 3, we describe how to select two important input
parameters, ki and d, by using manifold reconstruction.
Section 4 presents the charting algorithm to compute
Riemannian normal coordinates. Experimental results are
given in Section 5, and Section 6 is devoted to the complexity
analysis. An earlier version of this work appeared in the Ninth
European Conference on Computer Vision (ECCV ’06) [33].

2 MATHEMATICAL PRELIMINARIES

We briefly review some necessary concepts in Riemannian
geometry [34], [35]. A bijective map is called a homeomorphism
if it is continuous in both directions. A (topological) manifoldM
of dimension d is a connected Hausdorff space for which
every point has a neighborhoodU that is homeomorphic to an
open subset V of Rd. Such a homeomorphism x : U ! V is
called a (coordinate) chart. An atlas is a family fU�; x�gof charts
for which the fU�g constitute an open covering of M. A
manifoldM is called a differentiable manifold if there is an atlas
of M, fU�; x�g, such that all chart transitions

LIN AND ZHA: RIEMANNIAN MANIFOLD LEARNING 799

Fig. 3. The metric preserving problem. (a) A Swiss roll data set. (b) An ideal isometric embedding. (c) Embedding results using the spectral method
LTSA. (d) Embedding results using another spectral method LLE.

Fig. 4. The cost averaging problem. (a) A punctured sphere data set.
(b) Embedding results using the spectral method LTSA.



x� � x�1
� : x�ðU� \ U�Þ ! x�ðU� \ U�Þ ð3Þ

are differentiable of class C1. A differentiable manifold M
endowed with a smooth inner product (called Riemannian
metric) gðu; vÞ or hu; vi on each tangent space TpM is called a
Riemannian manifold ðM; gÞ.

The exponential map exppðvÞ is a transform from a tangent

vector v 2 TpM into a point q 2 � �M such that distðp; qÞ ¼
vk k ¼ hv; vi1=2, where � is the unique geodesic traveling

through p with the tangent vector v. A geodesic is a smooth

curve that locally joins their points along the shortest path. All

the geodesics passing through p are called radial geodesics. The

local coordinates defined by the chart ðU; exp�1
p Þ are called

(Riemannian) normal coordinates with center p. Note that

normal coordinates preserve the distances on radial geode-

sics. For example, unfolding a sphere onto a plane in normal

coordinates can preserve the distances on great circles, like

paring an orange. Note that for a manifold with complex

topology, for example, a torus, multiple normal coordinate

charts, rather than one single chart, are needed to cover the

whole manifold.

3 PARAMETER ESTIMATION

There are two important input parameters for most
manifold learning algorithms: the neighborhood size k
and the intrinsic dimension d. An appropriately chosen
neighborhood size is the key to the success of these
algorithms [36]. Choosing a large neighborhood may
introduce “short-circuit” edges between two separating
branches, which drastically alter the original topological
connectivity. On the other hand, choosing a small neighbor-
hood might fragment the manifold into a large number of
disconnected regions. In [36], a “trial-and-error” method is
proposed for choosing a reasonable neighborhood size,
based on a trade-off between two cost functions. Clearly,
this method is costly and cumbersome, as the embedding
algorithm runs repeatedly by testing different sizes. More-
over, a fixed neighborhood size (k or radius ") may not be
suitable for data sets with large variations. In [37], a
neighborhood contraction and expansion method is pre-
sented to adaptively select ki at each point xi.

Intrinsic dimensionality estimation is a classical problem
in pattern recognition [38]. The existing approaches can be
roughly divided into two groups: eigenvalue projection
methods [39], [40] and geometric methods based on NN
distances [41], [42], [43], [44] or fractal dimensions [45]. In [13],
ISOMAP determines the intrinsic dimension by looking for
an “elbow” point, at which the residual variance ceases to
decrease significantly with added dimensions. Nevertheless,
it is cumbersome to try each dimension. Moreover, some-
times there may not be a clear “elbow” point.

The two parameters, the neighborhood size k and the
intrinsic dimension d, reflect the topological properties of
the underlying manifold M. We present a manifold
reconstruction method to estimate these parameters. Our
manifold reconstruction method greatly simplifies Free-
dman’s method [46], which is computationally expensive
on the optimization of convex hulls. In our method, edge
connections are first constructed to adaptively determine
the neighborhood size, and then, the underlying manifold is

reconstructed as a simplicial complex. Naturally, the
dimension of this complex serves as a reliable estimation
of the intrinsic dimension of M.

The key to the manifold reconstruction from a set of
unorganized data points is recovering edge connections
correctly. Consider a simple example of five points sampled
from a curve (Fig. 5). It is apparent that the one-dimensional
(1D) reconstruction in Fig. 5b is much better than the
2D reconstruction in Fig. 5c. These points are more likely to
be sampled from a 1D curve than a 2D surface. The width of
the 2D surface in Fig. 5c is too small and thus can be
negligible. In fact, any thin rope in the physical world can
be modeled as a 1D curve by ignoring its radius. This
simple example motivates the concepts of “visible” neigh-
bors in order to avoid the “unreasonably” long edge
connections that occurred in Fig. 5c.

The neighborhood selection algorithm for each point xi
consists of the following three steps (illustrated in Fig. 6 on
an S-curve example):

1. Search its K-NNs, denoted KNNðxiÞ, with a large
enough K. Connect an edge between xi and each of
its K-NN.

2. Determine the “visible” neighbors VNðxiÞ ¼ fy 2
KNNðxiÞjhxi � z; y� zi � 0; 8z 2 KNNðxiÞg o f xi
and delete edge connections with nonvisible neigh-
bors. A point y is said to be a visible neighbor of xi if
there is no other point z that separates y and xi.
Equivalently, it requires that the angle between any
two adjacent edges should be acute or right. Obtuse
angles are prohibited. This property guarantees
well-shaped simplices in manifold reconstruction.

3. Obtain the “safe” neighborhood, denoted SNðxiÞ, by
removing the short-circuit neighbors. We observe that
short-circuit edges are often much longer than other
“safe” edges. Otherwise, the data is certainly ill posed
(or too sparse), and we cannot discern disjoint
branches. Based on this observation, we use a simple
“jump” detection method to remove these short-
circuit edges. First, edges are sorted in the ascending
order of lengths, denoted f~e1; � � � ;~ekg, if there are
k visible neighbors. Second, we use PCA3 to estimate
the local intrinsic dimension dj of the first jð1 < j � kÞ
edges f~e1; � � � ;~ejg. Then, we have an array of dimen-
sions fd1; � � � ; dkg for edges f~e1; � � � ;~ekg. If dj > dj�1,
compute the jump of increased length jejj � jej�1j. If
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Fig. 5. Reconstruction of five points sampled from a curve.

(a) Unorganized data points. (b) One-dimensional reconstruction.

(c) Two-dimensional reconstruction.

3. This method, based on nonzero eigenvalues of the covariance matrix,
was proposed by Fukunaga and Olsen [38], [39]. Eigenvalues are first
normalized by dividing them by the largest eigenvalue. The intrinsic
dimension is defined as the number of normalized eigenvalues that are
larger than a threshold T . We set T ¼ 0:08 in all experiments.



the maximal jump is larger than a given threshold,4

posterior edges are thought of as short-circuit edges
and, thus, are removed. If it is less than the threshold,
all edges are thought of as safe edges.

As 1D simplices (that is, edges) have been determined,
simplices in higher dimensions are constructed by grouping
adjacent edges. For example, if ða; bÞ is an edge and c is any
other point, then a triangle ða; b; cÞ is constructed when
there are two edges ða; cÞ and ðb; cÞ in the edge list. This
procedure repeats from a low dimension to a high
dimension until there are no new simplices generated.
The target simplicial complex is composed of all the
simplices. The dimension of the complex, defined as the
maximal dimension of its simplices, serves as a good
estimate5 of the intrinsic dimension of M.

4 MANIFOLD CHARTING

4.1 Our Previous Algorithm

We first briefly describe our previous charting algorithm
presented in ECCV ’06 [33]. It consists of three steps: 1) choose
a base point p as the origin of the normal coordinate chart,
2) compute the tangent space TpM at p and set up a Cartesian
coordinate chart, 3) use Dijkstra’s algorithm to find single-
source shortest paths and calculate the normal coordinates for
each endpoint of the shortest paths.

In general, the base point p may be selected arbitrarily.
Recall that for a manifold with complex topology, multiple
charts are needed and, therefore, multiple base points will be
chosen. However, for a manifold with boundaries, we prefer
choosing a base point close to the manifold center so that one
single chart at this point can represent the entire manifold.
Computationally, the center can be found by solving a
minimax problem. That is, the maximal geodesic distance
between a candidate point and any other point is called a
geodesic radius, and the candidate point with the minimal

geodesic radius is the center. Note that here, we need not
determine the boundary explicitly, which would be difficult
and unstable for real data sets. Instead, Dijkstra’s algorithm
[47], [48] is utilized to calculate the shortest path between a
candidate point and another point on the manifold, which
approximates the geodesic curve between these two points.

A coordinate chart is set up by computing the tangent
space TpM

x0 þ spanfx1 � x0; . . . ; xd � x0g; ð4Þ

where fx0; x1; . . . ; xdg are ðdþ 1Þ geometrically independent
edge points (or NNs) of p. Points fx0; x1; . . . ; xdg are said to be
geometrically independent if the vectors fx1 � x0; . . . ; xd � x0g
are linearly independent. Any point on the tangent space can
be represented as

x0 þ
Xd
i¼1

�iðxi � x0Þ: ð5Þ

An orthonormal frame, denoted ðp;~e1; � � � ;~edÞ, is computed
from the vectors fx1 � x0; . . . ; xd � x0g by using the Gram-
Schmidt orthogonalization.

Then, Dijkstra’s algorithm [47], [48] is exploited to find
single-source shortest paths in the graph determined by the
simplicial complex. Each time a new shortest path is found,
the normal coordinates of the endpoint on this new path are
computed. If the endpoint q is an edge point of p, we
directly compute the projection of q, denoted q0 2 Rd, onto
the tangent space ðp;~e1; � � � ;~edÞ by solving the following
least squares problem:

min
x

���q � pþ
Xd
i¼1

xi~ei

 !���2

Rn
; ð6Þ

where x ¼ ðx1; x2; . . . ; xdÞ 2 Rd are the projection coordi-
nates of q0 in the tangent space. The normal coordinates of q
are given by

kq � pkRn

kxkRd

x ð7Þ

since normal coordinates attempt to preserve distances on
each radial geodesic.

If the endpoint q 2M � Rn is not an edge point of p, the
normal coordinates of q (denoted q0 2 Rd) is computed by
solving a quadratically constrained linear least squares
problem. Let point b be the previous point on the shortest
path from p to q. Suppose that b has k edge points
fc1; . . . ; ckg whose normal coordinates have been computed
previously. The number k of these points is required to be
larger than or equal to d in order to guarantee the correct
solution. (One exception may occur at the beginning of
Dijkstra’s algorithm, when k is less than d. In this case, point
q is treated as an edge point of p to compute its normal
coordinates.) Fig. 7a shows such an example with k ¼ 3. The
basic idea is that we aim to preserve the angles in the
neighborhood of b while at the same time keeping the
distance between q and b unchanged. This leads to the
following linear least squares problem:

cos �i ¼
hq � b; ci � bi
kq � bk � kci � bk

	 cos �0i ¼
hq0 � b0; c0i � b0i
kq0 � b0k � kc0i � b0k

;

i ¼ 1; 2; . . . ; k

ð8Þ
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4. The threshold can be set as � times the average pairwise distance of
these neighbors, which reflects the idea of local sampling density in this
small region. � is a parameter that can be set. It is not our intention to state
that the proposed method can succeed to remove all short-circuit edges in
any cases. In fact, we have no “ground-truth” short-circuit edges for a set of
unorganized data points. The parameter � provides a way to control the
quality of short-circuit edge removal. Improving the robustness of this
method is our future work.

5. Certainly, sparse sampling and noise pose serious threats to any
attempt to estimate the intrinsic dimension of an unorganized data set.
Here, our motivation is to provide a new method to estimate the
dimension, which would be an input parameter to the following charting
algorithm. Although dimension estimation is only a preprocessing step in
the whole framework and is not our main purpose in this paper, the
objective is to point out a new solution to estimating dimensions and
neighbors via manifold reconstruction.

Fig. 6. An S-curve example to illustrate the three steps of adaptive
neighborhood selection for the current point p. 1) Determine the K-NN
neighborhood ðK ¼ 8Þ, KNN ¼ fa; b; c; d; e; f; g; hg. 2) Determine the
visible neighborhood VN ¼ fa; b; cg. 3) Obtain the safe neighborhood
SN ¼ fa; bg by removing the short-circuit neighbor c.



with a quadratic constraint

kq � bk ¼ kq0 � b0k; ð9Þ

where q0, b0, and c0i are the normal coordinates of q, b, and ci,
respectively. Our goal is to compute q0 2 Rd. The problem
can be rewritten in a standard form

min
x
kAx� yk2 subject to kxk ¼ �; ð10Þ

where x ¼ q0 � b0, � ¼ q � bk k, y ¼ ½cos �1; . . . ; cos �k
T , and A

is a k� d matrix, with each row being
ðc0i�b0Þ

T

�kc0
i
�b0k . The method

given in Appendix A can efficiently solve this least squares

problem.

4.2 Limitations

Our previous algorithm has two limitations. One is in
finding a set of geometrically independent points,
fx0; x1; . . . ; xdg, in order to set up a coordinate chart. If this
set of points is not geometrically independent, a new set of
points must be examined again. This “trial-and-error”
procedure is cumbersome.

Another limitation is that shortest paths are exploited to
approximate geodesic curves. In the calculation of Rieman-
nian normal coordinates, geodesic curves are essential to
determine the geodesic direction and geodesic distance for a
point. Generally speaking, if the underlying manifold is
densely sampled, the shortest path approximation may still
offer satisfactory accuracy. However, if data is sparsely
sampled, this approximation will result in large errors. Fig. 8
shows such a failure case by using the shortest path
approximation on the sparsely sampled punctured sphere.

4.3 The New Algorithm

Two new features are incorporated to address the limitations
of our previous algorithm. The first one is replacing the Gram-
Schmidt orthogonalization by a PCA projection at the base
point p. In a PCA projection, more than ðdþ 1Þ points are
selected to obtain a stable coordinate chart. This is a one-step
procedure, avoiding the “trial-and-error” iteration in the
Gram-Schmidt orthogonalization. In addition, the tangent
space does not need to be computed explicitly; thus, the step
of tangent space computation can be skipped. We directly
apply PCA to a local region of p, consisting of points

fx0; x1; . . . ; xkgðk > dÞ.6 We set x0 ¼ p, and other k points
are obtained by running Dijkstra’s algorithm from the base
point p. As the shortest paths are found, the first k endpoints
of these paths are collected into the local region of p. The
normal coordinates of these points are computed by using a
PCA projection.

The second new feature is replacing the “inaccurate”
shortest path approximation by “true” geodesic curves. These
“true” geodesic curves can produce more accurate normal
coordinates. A basic idea to find a geodesic curve from p to
another point q, as shown in Fig. 7b, is searching for a length-
minimizing curve among an admissible family of curves
connecting p and q. This idea leads to the subject known as the
calculusofvariations.Forourpurpose,weonlyneedtoconsider
a slight perturbation of point b, which is the preceding node on
theshortestpathfromp toq.Thisperturbedpoint,denotedasa
(see Fig. 7b), is called a geodesic anchor point. In our new
algorithm, the anchor point a replaces the role of point b. This
replacement can provide more accurate results in calculating
normal coordinates of the current point q. In [49], several
methods to compute a geodesic curve are based on the
geodesicequationthatanygeodesiccurvehas tosatisfy.These
methods require that the manifold has been parameterized,
that is,acoordinatecharthasbeenconstructedtocoverpandq.
However, this requirement is just our goal, hence making
these methods unsuitable here.

A geodesic anchor point a can be computed in a local
region of point b by minimizing the curve length from p to q.
To make the optimization problem tractable, we restrict the
search of anchor point a on a ðd� 1Þ-dimensional level set
(or submanifold) M 0 (see Fig. 7b) to q. The level set M 0

consists of all points that have identical geodesic distances
(to base point p) to that of b. To compute the level set, we
first fit the geodesic distance function, denoted as uð:Þ, with
a two-order polynomial in a local region of b. Then, the
anchor point a, which is the closest point on M 0 to q, can be
found by using the numerical method given in Appendix B.

For simplicity, a two-order polynomial uð:Þ is exploited
to fit the geodesic distance function in a local region of b. To
reduce the number of fitting coefficients, points in the local
region of b are first projected onto the tangent space at b
using PCA. There are ðdþ 2Þðdþ 1Þ=2 coefficients in the
two-order polynomial. For example, if d ¼ 2, the two-order
polynomial uð:Þ can be written as
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Fig. 7. An example illustrating how to compute the normal coordinates of
point q, which is not in the local region of the base point p. (a) Previous
algorithm. Point b is the preceding node on the shortest path from p to q.
Points c1, c2, and c3 are neighbors of b. Suppose that the normal
coordinates of b, c1, c2, and c3 have been computed. The normal
coordinates of q are computed based on geometric relations to b, c1, c2,
and c3. (b) The proposed new algorithm based on the geodesic anchor
point a. M 0 is the level set passing through points b and a. The normal
coordinates of q are computed based on geometric relations to a, c1, c2,
and c3, where a replaces the role of b in the new algorithm.

Fig. 8. An example illustrating a failure case of our previous algorithm by
using the shortest path approximation to geodesic curves. This
approximation causes large errors in the calculation of geodesic
directions, which splits the outer region of the punctured sphere data
into several separated pieces.

6. k is required to be larger than d in order to generate a stable tangent
space. On the other hand, to avoid an inaccurate approximation, k cannot be
too large. Nevertheless, an appropriate value of k can be chosen over a certain
range, for example, from dþ 1 to 2d, and can be applied to most cases.



uðx1; x2Þ ¼ w0 þ w1x1 þ w2x2 þ w3x
2
1 þ w4x1x2 þ w5x

2
2: ð11Þ

Let the local region of b consist of k points fc1; c2; . . . ; ckg,
whose normal coordinates have been computed. Accord-
ingly, the geodesic distances of these k points are known. A
standard least squares solution is used to fit this geodesic
distance function. Note that k is required to be larger than
(or equal to) ðdþ 2Þðdþ 1Þ=2 in order to solve this fitting
problem correctly.

The level set M 0 can be represented by uðxÞ � uðbÞ ¼ 0,
which is a general quadratic manifold. The closest point inM 0

to q is the geodesic anchor point a. Accordingly, a whole
geodesic curve segment in the local region can be computed
by replacing uðbÞ with other geodesic distances in the
equation of M 0. Moreover, starting from a, we can compute
a preceding geodesic curve segment. Therefore, by repeating
this procedure, we can compute a complete geodesic curve
starting from p to q, though only an anchor point a is required
in this work.

The next step is to solve the following linear least squares
problem:

cos �i ¼
ðq � aÞ � ðci � aÞ
kq � ak:kci � ak

	 cos �0i ¼
ðq0 � a0Þ � ðc0i � a0Þ
kq0 � a0k � kc0i � a0k

;

i ¼ 1; 2; . . . ; k

ð12Þ

subject to a quadratic constraint kq � ak ¼ kq0 � a0k, where q,
a, and ci are tangent coordinates obtained by using PCA, and
q0, a0, and c0i are the corresponding normal coordinates. Note
that the normal coordinates a0 can be obtained by locally
fitting the coordinate mapping with a linear transform. All
coordinates in (12) are of Rd. Again, the problem can be
rewritten as

min
x
kAx� yk2 subject to kxk ¼ �; ð13Þ

where x ¼ q0 � a0, � ¼ kq � ak, y ¼ ½cos �1; . . . ; cos �k
T , and
A is a k� d matrix with each row being

ðc0i � a0Þ
T

�kc0i � a0k
:

The method given in Appendix A is also used to solve the
unknown q0.

4.4 Discussions

The original definition of normal coordinates needs to
compute the geodesic direction of q at the base point p. To
this end, one has to compute the complete geodesic curve
from p to q. The geodesic direction at p must be of high
accuracy in order to discern subtle direction differences. In
addition, the original definition cannot handle the case that

the data manifold has “holes” (see the failure example shown
in Fig. 9). Due to these reasons, we modify the original
definition by exploiting the geodesic direction in a local
region of q. Since a normal coordinate chart preserves the
distances on a radial geodesic curve, we only need to preserve
the distance between q and a, denoted as distðq; aÞ, if distða; pÞ
has been preserved. Therefore, our algorithm can restrict the
calculation of normal coordinates in a local region only.

Compared with most existing algorithms, which attempt
to map the whole data points into an embedding space
simultaneously, our algorithm operates in an incremental-
learning fashion. In each step, we compute low-dimensional
coordinates only for one data point. This incremental
fashion can efficiently solve the problem of out-of-sample
extension: A new test point x can be easily mapped after the
original coordinate chart has been constructed. First, the
neighborhood selection method described in Section 3 can
be used to determine the neighbors of x. Second, find the
preceding node b (among the neighbors of x) on the shortest
path from the base point p to x and then compute the
geodesic anchor point a using the abovementioned method.
Finally, the normal coordinates of x can be calculated by
solving the above least squares problem.

5 EXPERIMENTAL RESULTS

We tested the proposed framework on seven synthetic data
sets (Swiss roll, Swiss hole, punctured sphere, twin peaks,
3D clusters, Gaussian, and cylinder) and three face data sets
(ISOMAP face data [50], LLE face data [51], and Olivetti
Research Laboratory (ORL) face data [52]). The first six
synthetic data sets are generated by the Mani Matlab demo
[53], whereas the cylinder data are sampled from a cylinder
with a height of 21 and radius of 30. All experiments were
conducted on a 2.80-GHz Pentium IV PC.

5.1 Parameter Estimation

We first investigate the robustness of the proposed adaptive
neighborhood selection method on randomly sampled data
from a Swiss roll. Our method performs consistently to
“unroll” the Swiss roll data correctly. Fig. 10 shows an
example that our method succeeds in choosing neighbor-
hood sizes adaptively, whereas other methods (such as
LTSA) using a fixed neighborhood size k may result in
failure. This example demonstrates an extreme case that any
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Fig. 9. An example illustrating that the original definition of normal
coordinates “fails” when the data has a hole. Points q and r have the
same geodesic directions at p, thus leading to “incorrect” normal
coordinates under that definition.

Fig. 10. Comparison between adaptive and fixed neighborhood
selection. (a) Swiss roll data. (b) Results of our charting algorithm with
adaptive neighborhood selection. (c) Results of LTSA with k ¼ 8.
(d) Results of LTSA with k ¼ 7. (e) Results of LTSA with k ¼ 6.
(f) Results of LTSA with k ¼ 5.



fixed neighborhood size k fails: larger k’s introduce short-
circuit edges, whereas smaller k’s segment the data into
pieces. Fig. 11 shows the edge connections using our
algorithm. As shown in Fig. 11b, there are a large number
of short-circuit edges within visible neighbor connections.
These short-circuit edges are successfully removed in
Fig. 11c and, thus, we obtain “safe” neighbors.

Second, we test the proposed dimension estimation
method on these data sets. Table 2 reports the numbers of
simplices in each dimension. Recall that the dimension of a
complex is the maximal dimension of its simplices. As shown
in the table, the dimensions of all synthetic data are correctly
estimated: 3D cluster data are 3D, whereas others are
intrinsically 2D. Our estimate for the ISOMAP face data is 4,
though it is rendered with three parameters (one for lighting
and two for pose). Several estimates [54] for this data set are
4.3, 4.0, and 3.5, respectively, which are very close to our
estimate. Our estimate for the LLE face data is 6, which is
justified by other estimates reported in [55], where different
estimates are given as 4.25, 5.63, 5.70, 6.39, and 8.30,
respectively.

5.2 Manifold Charting

To evaluate the performance of our RML algorithm, several
competing algorithms (PCA, ISOMAP, LLE, Hessian-based
LLE (HLLE), Laplacian eigenmaps, diffusion maps, and
LTSA) are compared on the seven sets of synthetic data. The
objective of this comparison is to map each data set, originally
embedded in a 3D space, onto a 2D plane. These synthetic
data provide a standard benchmark to evaluate the embed-
ding performance, because both input and output data are
low-dimensional and, thus, can be easily visualized.

In the following, we compare the results of each data set
(Figs. 12, 13, 14, 15, 16, 17, and 18) in detail:

1. Swiss roll data in Fig. 12. RML produces an “ideal”
output, showing that both geodesic distances and
angles are preserved almost perfectly. PCA fails
miserably, since linear projection methods cannot

unfold curved structures. ISOMAP attempts to
preserve all shortest path distances, but its output
is far from satisfactory. In contrast, HLLE and LTSA
yield more faithful results than ISOMAP does.
However, as the outputs of HLLE and LTSA are
compressed into a square region, both scale in-
formation and aspect ratio are lost. The other three
methods (LLE, Laplacian eigenmaps, and diffusion
maps) yield irregular 2D embeddings.

2. Swiss hole data in Fig. 13. RML also works perfectly by
preserving the geometry around the hole. PCA
produces an incorrect mixed point cloud. ISOMAP
and LLE yield distorted shapes around the hole. HLLE
and LTSA can maintain the shape around the hole but
not the aspect ratio and scale information. Laplacian
eigenmaps produce a curvelike shape, and diffusion
maps output an incorrect mixed point cloud.

3. Punctured sphere data in Fig. 14. This data set is
sampled from a punctured sphere, rather than a
complete sphere. The reason is that a sphere is not
homeomorphic to a 2D patch. To embed a sphere
onto a 2D space, the sphere must be segmented into
multiple patches or be punctured. Three algorithms
(RML, LLE, and Laplacian eigenmaps) yield good
results, even in the boundary area that undergoes
large deformation. HLLE and LTSA produce satis-
factory results in the central area, but the boundary
area shrinks. PCA, ISOMAP, and diffusion maps
produce incorrect mixed point clouds.
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Fig. 11. The proposed adaptive neighborhood selection method.
(a) Swiss roll data. (b) Visible neighbors in a bird’s view. (c) Safe
neighbors after removing the short-circuit edges in (b).

TABLE 2
Numbers of Simplices in Each Dimension

Fig. 12. Comparison results of Swiss roll data.

Fig. 13. Comparison results of Swiss hole data.



4. Twin peaks data in Fig. 15. Most algorithms produce

satisfactory results, except that PCA and diffusion

maps yield incorrect mixed point clouds. In the

output of Laplacian eigenmaps, data points appear
to aggregate around the four corners, yielding a

sparse distribution in the central area.

5. Three-dimensional clusters data in Fig. 16. RML, PCA,
and diffusion map can yield satisfactory results, in

which the shapes of the three clusters are preserved

and the global connection is maintained. Other

algorithms (except HLLE) can maintain the global

connection, but the shapes of the three clusters are

degenerated. HLLE produces incorrect mixed point

clouds.
6. Gaussian data in Fig. 17. Most algorithms (including

PCA) can yield satisfactory results. Again, HLLE
produces incorrect mixed point clouds. In the result
of Laplacian eigenmaps, data points appear to
aggregate around the outer circular boundary, and
in other areas, the data points are very dispersed.

7. Cylinder data in Fig. 18. RML cuts the cylinder along
one generatrix line and unroll it to form a long
stripe. Four methods (PCA, ISOMAP, Laplacian
eigenmaps, and diffusion maps) project the cylinder
data along the direction of generatrix lines and yield
a closed circle. The other three methods (LLE, HLLE,
and LTSA) produce incorrect mixed point clouds.

The average runtime of RML (including parameter
estimation) is about 1.4 seconds, which is approximately
two times of that of LLE, Laplacian eigenmaps, and LTSA.
Often, HLLE and diffusion maps spend several seconds,
whereas ISOMAP needs about 1 minute.

To evaluate the proposed RML algorithm on real-world
data, three face data sets (ISOMAP face data [50], LLE face
data [51], and ORL face data [52]) are used to perform
dimensionality reduction. The objective is to embed each
original high-dimensional data into a 3D space, in which
data point distributions can be visualized. We present the
results in detail:
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Fig. 14. Comparison results of punctured sphere data.

Fig. 15. Comparison results of twin peaks data.

Fig. 16. Comparison results of 3D clusters data.

Fig. 17. Comparison results of Gaussian data.

Fig. 18. Comparison results of cylinder data.



1. ISOMAP face data in Fig. 19. In this 3D representation,
data points are uniformly distributed and well
organized. Representative face images are shown
next to circled points. Note that because this figure can
only display a 2D projection of the 3D space; nearby
points in this projection may not correspond to nearby
points in the 3D space. Despite this projection, the
representative face images still show several particu-
lar modes of variation in pose and lighting condition.

2. LLE face data in Fig. 20. A 2D projection of the
3D embedding representation is shown, and a set of
representative face images are superimposed on data
points. The uniformly distributed point cloud imple-
ments a perceptually natural 3D embedding of the
face image data. Although we cannot directly examine
the similarity among each local region, the represen-
tative faces reveal several groups of similar facial
expressions (smile, wink, and so on). The same LLE
face data were previously tested using LLE [16],
Laplacian eigenmaps [19], SDE [21], and conformal
eigenmaps [26]. In comparison, these spectral meth-
ods often tend to produce irregular embeddings that
are not easy to understand and interpret.

3. ORL face data in Fig. 21. The goal of this experiment is
to show a 3D embedding of a set of face images of
multiple persons, which is important in applying
manifold learning algorithms to face recognition.
The 3D embedding of this data is similar to that of
the above two data sets, recovering a well-organized
underlying geometric structure of the original data.
It is interesting to observe that the face images of a
single person appear to be sampled from a curve,
and often, several curves twist together. These

twisted curves reveal a certain degree of interperson
similarity, which makes face recognition difficult.

In summary, the proposed RML algorithm outperforms
most existing methods in the visualization task on seven
synthetic data sets and also achieves satisfactory embed-
ding results on three real-world data sets.

5.3 Discussion

In our experiments, a large number of synthetic and real-
world data sets are used to compare several major manifold
learning algorithms, which is more comprehensive and more
objective than most work in the literature. It is not our
intention to convince the reader that the proposed RML
algorithm offers an optimal solution to any dimensionality
reduction problem. In fact, each algorithm is derived from a
different motivation and has its own strength and weakness.
This poses an important question to any practitioner who
attempts to use manifold learning algorithms: “How does one
know which method to pick?”

From our experience, we list several important factors
that should be considered:

1. Data sets. First, try to learn more about the data set at
hand: sample size, input dimension, intrinsic dimen-
sion, noise level, sampling density, and so on. For
instance, ISOMAP fails when the underlying mani-
fold is not isomorphic to a convex region of a
euclidean space [56].

2. Applications. Until now, there is no common criterion
to evaluate and compare the performance of different
manifold learning algorithms. One can define his or
her own criterion to fit the application best. In the
literature, two major applications are data visualiza-
tion and pattern classification. For instance, incre-
mental learning is essential to classification. If this
capability is not easily available in certain methods, do
not use them for classification purposes.

3. Two parameters, k and d. Most algorithms require
these two parameters as inputs. One can use the
method described in Section 3 or other similar
methods to estimate them beforehand.

4. Computational complexity. A heavy computational
load often hinders one method to be practically
used. Particularly, for a data set of thousands of
samples in a high-dimensional space, this problem
becomes more critical.

5. Robustness to sparse sampling and noise. As few
theoretical results are reported from this aspect, one
tractable way is to examine the robustness by using
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Fig. 19. Three-dimensional embedding of ISOMAP face data using RML.

Fig. 20. Three-dimensional embedding of LLE face data using RML.

Fig. 21. Three-dimensional embedding of ORL face data using RML.



some low-dimensional test data sets, for example, the
data sets provided by the Mani demo [53].

6. Empirical examination on real-world data sets. These
large-scale tests facilitate us to observe, identify, and
explain the limitations of different manifold learning
algorithms.

6 COMPUTATIONAL COMPLEXITY

In this section, we provide an analysis of the computational
complexity of each step as a function of the number of
samplesN , the input dimension n, the intrinsic dimension d,
and other related factors if necessary.

Adaptive neighborhood selection. For a given point x,
computing the distances needs OðNnÞ calculation, and
sorting to get itsK-NNs takesOðKNÞ. Thus, for allN points,
finding K-NNs is OðN2ðnþKÞÞ.

The next step is to find visible neighbors. For a given
point x, all pairs of its neighbors should be examined. The
complexity is OðNK2Þ for all points.

The final step is to remove short-circuit edges. Note that
the size of visible neighbors for one point is not larger thanK.
The complexity is OðNKÞ for all points if a simple threshold
method is used to detect short-circuit edges. When PCA is
used to find out where the dimension increases, an extra cost
is to compute eigenvalues for a covariance matrix. Given an
n� n real symmetric matrix, the complexity is Oð2n3=3þ
30n2Þ for eigenvalues only, by using the most typical
combination of Householder reduction and tridiagonal QL
implicit (routines tred2 and tqli in [57, Chapter 11]). When n
is large, computing in this way is demanding. Let an
n� k matrix X be the data. Alternatively, one can compute
the eigenvalues of a k� k matrix XTX, which is much faster
than handling the covariance matrix XXT . This is because
XXT ¼ US2UT , and XTX ¼ V S2V T , by using a singular
value decomposition (SVD) X ¼ USV T . Compared with the
large n, k is often small. Therefore, the complexityOð2k3=3þ
30k2Þ can be negligible.

Intrinsic dimension estimation. Given a simplex, say,
ða; b; cÞ, the goal is to find the higher dimensional simplex
ða; b; c; dÞ. We only need to examine if d has been a neighbor
to any other point. Thus, d can be obtained by computing
the common intersection of three neighbor sets of a, b, and c.
Assume that the average size of neighbors is k. The
complexity is Oðk2Þ for comparing any two sets. However,
the intersection set will become smaller with more inter-
section operations, which can save comparisons. In practice,
the total time of dimension estimation is related to the
number of simplices in each dimension.

Base point selection. For a given candidate point x, most
time is spent on running Dijkstra’s algorithm to find the
maximal path length. Given a graphG ¼ ðV ;EÞ, the complex-
ity is OðV 2 þ EÞ with a simple min-priority queue, OððV þ
EÞ logV Þwithabinarymin-heap,orevenOðV logV þ EÞwith
a Fibonacci heap [47], [48]. Here, V , the number of vertices, is
equal to N . Therefore, the total time is OðNðV logV þ EÞÞ ¼
OðN2 logN þNEÞÞ with a Fibonacci heap, when iterating
through all data points.

PCA projection. Suppose this is performed upon a local
region that consists of points fx0; x1; . . . ; xkgðk > dÞ. Let the
n� kdata matrix beX ¼ ½x1; . . . ; xk
. We need to compute the
unit eigenvectors corresponding to the d largest eigenvalues
of the n� n covariance matrix. The complexity is Oð4n3=3þ

3n3Þ (see [57]). When n is larger than k, alternatively, we can
use the eigendecomposion of the k� k matrix XTX. Let Y ¼
UTX ¼ SV T if X ¼ USV T . We have XTX ¼ V S2V T . Then,
we can obtain the PCA projection Y ¼ SV T by using the first
d eigenvalues and eigenvectors. Thus, the time is reduced
to Oð4k3=3þ 3k3Þ, which is negligible if k is small.

Anchor point calculation. The two-order polynomial
fitting is to solve a least squares problem min

x
kAx� bk,

where A is a k�m matrix, k > m, m ¼ ðdþ 2Þðdþ 1Þ=2, and
b is an m� 1 vector. Most time is spent on matrix multi-
plication and inversion. The next step is to compute the
distance from one point y to a general quadratic manifold
QðxÞ ¼ xTAxþ bTxþ c ¼ 0, where A is a symmetric
d� d matrix, b is a d� 1 vector, and c is a scalar. In this step,
most time is spent on the eigendecomposition of A and
finding the roots of a polynomial (see Appendix B).

Quadratically constrained least squares problem (13).

Most time is spent on the SVD of a k� d matrix A (where
k > d) and the calculation of x ¼ ðATAþ �IÞ�1ATb. In fact,
we only need to compute the eigendecomposition of AAT to
getU and S, provided thatA ¼ USV T , since V does not occur
in the solutions. Note that using Newton’s method to solve
the Lagrange multiplier � is independent of N , n, and d.

Overall complexity of the entire framework. When N is
large (which is the usual case in manifold learning applica-
tions), the complexity of neighbor selection, dimension
estimation, and base point selection dominates. For real-
world applications, the input dimension n is often large too.
Compared with the largeN and n, other factors (such as d, k,
andm) are rather small in typical settings. Due to this fact, the
normal coordinates of each data point can still be efficiently
computed, in which the PCA projection, anchor point
calculation, and least squares solution are the principle
workload.

7 CONCLUSION

We have presented a general framework called RML for
nonlinear dimensionality reduction, which can learn the
intrinsic geometry of the manifold with metric preserving
properties. Experimental results demonstrate the excellent
performance of our algorithm on both synthetic and real data
sets. Manifold learning is closely related to several significant
themes of the mathematics in the last century [58], such as
from linear to nonlinear, from low-dimensional to high-
dimensional, and from local to global. Our work translates the
concept of Riemannian normal coordinates onto a cloud of
unorganized data points. Future work may include the
development of new tools to learn more topological and
geometrical properties of the underlying manifold, which
may not be applied to dimensionality reduction only.

APPENDIX A

QUADRATICALLY CONSTRAINED LEAST SQUARES

PROBLEM

In [59], two approaches are provided to solve the linear

least squares problem min
x
kAx� bk2 with a quadratic

constraint kxk ¼ �. One approach uses Lagrange multi-

pliers by constructing the following potential function:
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	ðx; �Þ ¼ kb�Axk2
2 þ �ðkxk

2
2 � �2Þ

¼ ðbT � xTAT Þðb�AxÞ þ �ðxTx� �2Þ:

Setting the gradient of this function with respect to x equal
to zero yields the following equation:

@	

@x
¼ �2ATbþ 2ATAxþ 2�x ¼ 0;

which has the solution x ¼ ðATAþ �IÞ�1ATb, provided that
the inverse of ðATAþ �IÞ exists. Substituting this result into
the constraint kxk2

2 ¼ �2, we have

 ð�Þ ¼ bTAðATAþ �IÞ�2ATb� �2 ¼ 0:

Let A ¼ U�V T be the SVD of A. Then, our constraint
equation becomes

 ð�Þ ¼ bTU�V T ðV�TUTU�V T þ �IÞ�2V�TUT b� �2

¼ bTU�V T ðV ð�T�þ �IÞV T Þ�2V�TUT b� �2

¼ bTU�V T ðV ð�T�þ �IÞV T

V ð�T�þ �IÞV T Þ�1V�TUT b� �2

¼ bTU�ð�T�þ �IÞ�2�TUT b� �2 ¼ 0:

Letting � ¼ UTb, we get

 ð�Þ ¼
Xd
i¼1

�2
i 


2
i

ð
2
i þ �Þ

2
� �2 ¼ 0:

Note that  ð�Þ decreases from1 to ��2 as � goes from �
2
d

to 1. We can use Newton’s method to find the root �. A
good initial value for � is zero, and the objective function
vanishes to zero very fast.

APPENDIX B

DISTANCE FROM ONE POINT TO A GENERAL

QUADRATIC MANIFOLD

For the completeness of the paper, we briefly summarize
the algorithm in [60] for computing the distance from one
point to a general quadratic manifold (a quadratic curve or
a quadratic surface in low dimensions), defined implicitly
by the following quadratic equation:

QðxÞ ¼ xTAxþ bTxþ c ¼ 0;

where A is a symmetric d� d matrix, b is a d� 1 vector, and
c is a scalar. The parameter is x, a d� 1 vector. Given the
manifold QðxÞ ¼ 0 and a point y, find the distance from y to
the manifold and compute the closest point x on the
manifold to y. Geometrically, the closest point x must
satisfy the condition that y� x is normal to the manifold.
That is, y� x ¼ t � rQðxÞ ¼ tð2Axþ bÞ for some scalar t,
since the gradient is normal to the manifold. Thus, we have
x ¼ ðI þ 2tAÞ�1ðy� tbÞ, where I is the identity matrix.
Factoring A into an eigendecomposition A ¼ RDRT yields

x ¼ðI þ 2tAÞ�1ðy� tbÞ
¼ ðRRT þ 2tRDRT Þ�1ðy� tbÞ
¼ ½RðI þ 2tDÞRT 
�1ðy� tbÞ
¼RðI þ 2tDÞ�1RT ðy� tbÞ
¼RðI þ 2tDÞ�1ð�� t�Þ;

where the last equation defines � and �. Replacing x in the
quadratic equation yields

ð�� t�ÞT ðI þ 2tDÞ�1DðI þ 2tDÞ�1ð�� t�Þ
þ �T ðI þ 2tDÞ�1ð�� t�Þ þ c ¼ 0:

The inverse diagonal matrix is

ðI þ 2tDÞ�1 ¼ diagf1=ð1þ 2t�1Þ; . . . ; 1=ð1þ 2t�dÞg;

where D ¼ diagf�1; . . . ; �dg. Multiplying through by
Qd

i¼1

ð1þ 2t�iÞ2 leads to a polynomial of at most order 2d. The roots

of the polynomial are computed, and we get x ¼ ðI þ
2tAÞ�1ðy� tbÞ for each root t. Finally, choose the x that

achieves the minimal distance to y.
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