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ABSTRACT

In this paper, a matrix factorization method is presented
for reversible integer M-band wavelet transforms. Based
on an algebraic construction of orthonormal M-band
wavelets with perfect reconstruction, the polyphase matrix
can be factorized into a finite sequence of elementary

reversible matrices that map integers to integers reversibly.

We show that the reversible integer mapping is essentially
equivalent to the lifting scheme, thus we extend the
classical lifting scheme to amore flexible framework.

1. INTRODUCTION

For signal processing and pattern recognition, M-band
wavelets have attracted considerable attention due to their
ability to provide much more freedom than the classical
two-band wavelets, and their close connection to M-
channel filter bank. However, the increased degrees of
freedom make it challenging to design M-band wavelets
with some useful properties.

As there are M-1 wavelet filters and only one scaling
filter in an M-band wavelet system, usualy two-step
construction procedure is applied to reduce the design
difficulties. The first step is to design the scaling filter
with K-regularity [8, 14], linear-phase [1], and other
properties [2, 13]. Then in the second step, wavelet filters
are chosen to meet some pre-specified conditions with the
given scaling filter [1, 8, 14, 18]. The disadvantage of
two-step construction is that the scaling filter and the
wavelet filters are designed separately, and it can not fully
exploit the freedom provided by M-band wavelets. In [4,
10, 12], the lifting scheme is generalized to M-band
wavelets. But due to the complexity, it is not easy to
factorize a general M-band wavelet transform into lifting
steps.

In [11] an agebraic construction of orthonormal M-
band wavelets with perfect reconstruction is presented
based on matrix decomposition. It is natural to factorize
the construction matrices further into lifting steps, or into
elementary reversible matrices that immediately map
integers to integers, which is proposed in this paper. In
Section 2 we review some conclusions of the algebraic

construction method [11], reversible integer mapping [3,
7], and the lifting scheme [5, 9]. Section 3 describes the
main results of our factorization, and Section 4 shows our
factorization is equivalent to the lifting scheme. This
paper is concluded in Section 5.

2. PRELIMINARY

2.1. M-band wavelets
Suppose the filter bank matrix of M-band wavelets with
length ML is A=[A; A+, A ], Where A are MxM

matrices with M > 2 and L>2. The first row of A is for
the low-pass filter, and other M-1 rows are for high-pass
filters of the wavelets. Thus, the polyphase matrix is
P(2=A+AzZ +--+A_,z"7.

The constraint conditions for an orthonorma M-band
filter bank with perfect reconstruct property are as follows:
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For the case of L=2 and L=3, the following results have
been proved in [11]:
o For L=2, A=[A,,A] satisfy (1) if and only if they

have the following decompositions:
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where n,+n, =M, and u and v are orthogonal matrices
with yv Te=+/Me,-
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« For L=3, A=[A,, A, A,] satisfy (1) if and only if they
have the decompositions o, =US VT, k=012, Where
Sy = diag(S, 1n0,0,0,0): S, =diag(0,0,0,Ir2,S) »

-C S=diag(s,s,, ", s),
0 C =diag(c,,C,,-**,C,), (3)
S, = I , 0<s,c <1,
0 ¢y =1
C 2r+n+n+n,=M,

and U and v are orthonormal matrices and satisfy
U(S,+S,+S,)Ve=JMe,-

2.2. Reversibleinteger mapping
An integer factor is defined as +1 for real numbers. A
triangular elementary reversible matrix (TERM) is an
upper or lower triangular square matrix with integer factor
diagonal entries, and a single-row elementary reversible
matrix (SERM) is a sguare matrix with integer factor
diagonal entries and only one row of off-diagonal entries
that are not al zeros. If al the diagona entries are equal
to 1, the matrix is called aunit TERM or a unit SERM.
One important property for elementary reversible
matrices is that we can use reversible integer mappings to
approximate to them. For example, let A = [a] IS an MxM

upper TERM, the linear transform y= Ax can be

approximated by the following reversible integer mapping:

M
|Yi =X +\‘Za1ijJv i=12--,M-1
j=i+l
Yv = 8un X

where |r | denotes the integer part of a real number r.
Because a, is an integer factor that does not change the
magnitude, the output y is an integer if the input x is an
integer. Moreover, x can be recovered from y with the
order x,, ,x, ., %

The following result shows that normalized matrices
with determinant +1 can be factorized into TERMs or
SERMSs, which has been proved in [7]:

Lemma 1. If an MxM matrix A satisfies that det(A)=
#1, then A has a unit TERM factorization of A=PLUS,
and a unit SERM factorization of A=PS,Sy.1...S1S
where P is a permutation matrix with det(A)=det(P), L a
unit lower TERM, U a unit upper TERM, & a unit SERM
with nonzero off-diagonal entries in the last row, and S,
(m= M,M-1,...,1) a unit SERM with nonzero off-diagonal
entriesin the m-th row.

2.3. Thelifting scheme

The lifting scheme was developed to construct second
generation wavelets [16, 17], but it was found later that
first generation wavelets can be aso built with the lifting
scheme [5]. The lifting scheme leads to fast, reversible,

in-place implementation of wavelet transforms. We will
show one example to illustrate the main idea.

Consider the two-band Daubechies 4 wavelet
transform [5, 9]. Thefilter formis

h:T\%[HI& 3443, 3-43, 1-43]
I T - 1
_m[l V3, —3+43, 3+4/3, -1-43]

The polyphase matrix for the filter can be formulated as
5(2){%'9(2) HO(Z)}: 1 [(1+«f3)+(&f3)zl B33z }
G@ G@] 42|0-3+@E+37* (3+3)+(1-3Zt
The determinant of the polyphase matrix is —z*. Usually
the normalized polyphase matrix with determinant 1 is
used, which can be given by
PO~ {(1# J+E39z7"  (@HI+a—37 }
42| -1-32-3+H3 ~(B+Yz—(-13)
Then, alifting factorization can be given by
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P(2) = V2
0

Let the ztransform of an input signa 9[n] be §2), and its

even and odd components are S(2) and S(2). Then, the z

transform representation of wavelet transformis given by

[S(z)} P ){se(z)}
b(2) S(2)]

Let
el o 7186
D2 | |0 1[S(2
where
S.(2) =) 59|z = Zs[Zn]z’"
S,(2) = Zd“’)[n]z’” Zs[2n+1]z’”

sO(z) = 25(1)[n]z‘” D(l)(z) Zd(l)[n]z’”

By the umqueness of the z- transform representation, we
have

s9n] = s”[n] ++/3d®[n]
d®[n] =d®[n]
Sequentially, we obtain the following lifting steps:

S(Z)[n] 5(1)[n]
d®[n] = \/és(l[n] \/74_25(1)[n+1]+d(1)[n]
{5(3)[n]=s(2)[n]_d(2)[n_1] s9[n] = J3- 13(3)[n]
d(3) =d(2) ,
e d“[n] = @*%w[]
J2

From this example, we can see that the filter form, the
matrix factorization, and the lifting steps can be converted
from one representation into another [9]. In addition, the
Z" term in the lifting factorization corresponds to SO+

or d®[n+m inthelifting steps.



3. FACTORIZATIONS

In this section, we give the TERM or SERM factorization
of the polyphase matrix P(2) of an orthonorma M-band
filter bank A=[A,A, - A_,] With perfect reconstruction

for the cases of L=2 and L=3.
3.1. Thecaseof L=2

For the case of L=2, by (2), the polyphase matrix has the
following form:

_ -1 _ Ino 0 T

P(2) = Ay + Az —U[ 0 IMinozfl}\/ .
Because U and V are both orthonormal matrices,
det(U)=£1 and det(V)=%1. By Lemma 1, U and V have
TERM factorization of form PLUS, and SERM
factorization of form PSySy.:...$S. The intermediate

matrix
Iro 0
0 IyoZt

is equivalent to identity matrix, except for a trandation of
the input signal corresponding to the lower-right part.
Thus, reversible integer mapping can be implemented for
M-band wavelets of the case L=2.

3.2. Thecaseof L=3

For the case of L=3, by (3), the polyphase matrix has the
following form:

S -cz?t
-1 -2 T
P(2)=Ag+Az-+Az“=U B
cz? Sz72
where
I no .
B= Izt
| nzz'2
Notice that
S -Cczt S —-cz'1
B = I B
czt Sz cz?t Sz I

and the transform with B can be implemented for
reversible integer mapping directly, we only need to
consider how to factorize the matrix

s -czt
czl s?
Noting that C, S, and C+S are all nonsingular,c?+s?=1,
and sc =cs, and using the following useful equalities:

{Au AHH I Alz}{ [ 0}
Ay Apl [Ap+AAL(-AY) Ay -AZ(I-Ay) |

{ I 0 }{An Au},
CLAAY AL -AALAL | O

2 2
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AL
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factorizations. For the limitation of the paper length, we
here just present four of them as below.

1. The factorization with 3 TERMs:

s -cz'| I —szl{ [ o}
czt sz | |(1-9)czt sz? | CI-9)z |

_ I 01 -cz* I 0].
{(l—S)c*z*1 |z’2}o [ {C’l(I—S)z J

2. The factorization with 4 TERMs:
s -czt'| [-czt s o 1]
cz' sz | | sz? ¢zl 0]

B I sT [ ofo I
“|(s+Cs'C)z?+CS 'zt czt|-st(+CzY) 1|1 o

~ [ o 1 sT | oo 17,
“|s?z?+cstzt —1z%] 0 1| -s*t(+CzY) 11 0o
3. The factorization with 4 TERMs:

s -cz'| [I 1 ]s-c -(C+9)z"
{crl 8272}7[0 Iz’l}[ C szt }
1T —c+9)T1 o

{0 |z*1}{x s }{Y |z’1}

where Jo wlx 1o S o]

X =C-S(C+S)*(I -S+C), Y =(C+9)*(I -S+C).
4. The factorization with 7 TERMs:

s -Cz'|_ | 0 S -Cz*
czt sz? | |cstzt s'z?|o

[ oft o J1 -cz*fs o
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s o o I -s?
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Thus, reversible integer mapping can be implemented for
M-band wavelets of the case L=3.



4. EQUIVALENCE TO THE LIFTING SCHEME

It has been proved in [5] and [12] that any biorthogonal
two-band or M-band wavelet transform can be obtained
using lifting. This corresponds to a factorization of the
polyphase matrix into a sequence of lifting matrices and
one diagonal scaling matrix. A lifting matrix is a unit
upper or lower triangular square matrix with nonzero off-
diagonal entries only in the first column or the first row.

We show that the reversible integer mapping is
equivalent to the lifting scheme. Obviously, a lifting
matrix is a TERM or a SERM. On the other hand, a
TERM can be converted into a sequence of SERMs[7], a
SERM can be converted into a SERM corresponding to
the first row by one row exchange and one column
exchange only, and a SERM or a permutation matrix can
aso be factorized into lifting matrices. Then essence can
be conveyed by the following simple examples. Let

Straightforward calculations verify that
S=P,S,P;, S=LU,LU,L, P=D(U,)?

where
1 1 b acd 1
1 1 1
P =|1 0 .S = 1 =1 1
1 1 1
1 1 1
1 b c d 1 1 -b -c¢ —d
1 1 1
U, = 1 L,=|-1 1 U, = 1
1 1 1
1 1 1
1
-1 1 1 -11
1
1 ~ 1 ~ 1
L,=|a 1 ,D= L, = U, =
1 1 1 1 1
1 -1 1 1

5. CONCLUSION

In this paper, we first review an agebraic construction of
M-band wavelets, reversible integer mapping, and the
lifting scheme. Based on the algebraic construction, the
polyphase matrix can be factorized into a sequence of
elementary reversible matrices that map integers to
integers. These elementary reversible matrices can be
further factorized into lifting matrices, which establish the
equivalence to the lifting scheme, and alow us to

generalize the lifting scheme to a more flexible framework.

To find the general and optimal factorization for generic
M-band waveletsis our future work.
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