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Abstract

This paper presents an algebraic approach to construct M-
band orthogonal wavelet bases. A system of constraint
equations is obtained for M-band orthonormal filters, and
then a solution based on SVD (Singular Value
Decomposition) is developed to enable us to produce
innumerable wavelet bases of given length. Also the
property of 2 vanishing moments is integrated into our
wavelet construction process, which provides another way
to compute 2-regular M-band filter banks.
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1. Introduction

It is well known that 2-band orthogonal wavelets suffer
from severe constraint conditions, such as nontrivial
symmetric (linear-phase) orthogonal wavelets do not exist.
Biorthogonal wavelets, multiwavelets, and M-band
wavelets are designed as alternatives for more freedom
and capacities. This paper devotes to M-band wavelets
construction.

The design of M-band linear phase filter bank has been
investigated in [1]. Similar work was published in [2] but
based on time-domain constraints and only for M=2". In [3]
and [4], filters of K vanishing moments (or stated as K-
regular) and finite length are constructed. Scaling filters
are computed based on unitariness and autocorrelation, or
maximal flatness condition. Then matrix extension by
polyphase decomposition, or state-space characterization
is used to construct the (M-1) wavelet filters, though not
uniquely determined by the scaling filter (unlike the 2-
band case). Biorthogonal M-band filters are designed
using lifting scheme in [5].

Following the idea presented in [6] for 2-band
biorthogonal wavelets, in this paper an algebraic approach
is proposed to construct M-band wavelets by solving the
constraint equations. In contrast with Fourier-based
methods focusing on a few deliberate filters, our algebraic
approach gives the explicit formula with some free
parameters to produce innumerable wavelet bases, among
which we can find appropriate ones for specific
applications.

The rest of this paper is organized as follows. Section 2 is
a brief review of algebraic approach on 2-band
biorthogonal wavelets construction. Section 3 introduces
some background knowledge of M-band wavelets. Our
algebraic method is presented in Section 4 to construct M-
band orthonormal wavelet bases. In Section 5, conditions
of two vanishing moments are derived and integrated into
our construction method, with the direct results being the
well-known Daubechies scaling filters. The conclusions
are summarized in Section 6.

2. Review of the algebraic approach for 2-
band biorthogonal wavelets

Let Z denote the set of all integers and g(x), #(x) be two
scaling functions satisfying the double scaling equations

$(x) =2 h,¢(2x —n)
P(x) =2 hp(2x-n)

The corresponding wavelet functions are

W) =2 g,p2x-n)

nZ

P =23 g,802x-n)

nz
where ¢ = (-1, g, ="
h,, h aslow-passand ¢ =z as high-pass coefficients if
ZrlDZhn = ZnDZhn = \/E, ZMEZgn = znuzg’n =0

In addition, the linear phase property requires
h,=h, h,=h, n0Z> and the biorthogonal conditions

imposed on g(x), F(x), ¢(x) and gi(x) are equivalent to
Shh,,, =06, jOZ

nlz

zgngn—lj :5," Jjbz

nz

2 hga =0, jOZ

nlz

> ek, =0,  jOZ
nl1Z

20z - Usually, we take

I-n>

ns

where 5 =1 when j=¢ and 5 = otherwise.
J J
Given a discrete signal {;}  with finite energy, the
discrete biorthogonal wavelet transform
G = Zhu—uan: k0Z
nZ

d, = Zgnmcan’ k0Z
W0z



decomposes {4 } and {d}.- and the inverse

w0z into {Ck}

V= e v 8, d,, n0Z reconstructs

K0z KOz

{a} ., - Therefore, the perfect reconstruction (PR)

KOz
transform

condition is
Zhu 2 M2k +Zgn 2k&m-2k = Oy m,nUZ

Kz
which is proved to be equivalent to
>hh,,, =6, jOZ
nz
Consequently, a system of the constraint equations of
biorthogonal wavelets can be derived as
> hh,, =06, jOZ

n0zZ

Sy =Y =

nzZ Wz 2
~ ~ 1
hn: hn+ =07
h,=h.h, =h, n0Z

Considering the 5-7 tap case as an example and let
p, =~2h, q =2k, » we have the constraint equation
system as:

Podo *2P1q1¥2pyq, =2

Pids ¥ Podrt Py ¥ Pagp =0

g+ paq,=0

Do t2p, =1

2p, =1

q, +2q, =1

2q, +2q, =1

P, =p, n=12% g, =q,, n=123

If we take p, as a free parameter, then the solution is

4p, +1 - —1-2 _1_
92 = 4(4}72—1)’ 943 P29, 4 9> 94 5 q;
1
Po=172p,, py :E: D =D;

For p,=-0.1 , we get the 5-7 tap Daubechies

biorthogonal filters. In a similar manner, we can get the 9-
7 tap Daubechies biorthogonal filters.

3. Background material on M-band wavelets

Let M =2 be a fixed positive integer. A family of closed
subspaces v.(jDZ) in square integrable function space I

is called a multiresolution of [* if the following
conditions hold:

1) v, 0V and rov, if and only if fMeOV,, for all
j0z;

(i) v, is dense in I* and ﬂ v, ={¢’

0z
(111)]{¢(._,,);,,|j 7 is an orthonormal basis of v, for
some ¢y, .
The function ¢ in (iii), called M-band scaling function,
satisfies the refinement equation

@x) =Y e, A Mx—n)

n0z

where {¢}  satisfies S, =M - It is easy to see that
n0z

¢, =< )., (x) >= M [, @)@ My = m)dx
chcn e = O k0Z

nzZ
Apparently, the orthonormal basis of 7 is

@.,0)=M7"@qM x=n)},g,
Let w, be the orthogonal complement of v, in V.
V. =v,00,
It can be proved that there exist ¢, ..., i, , such that
{l//m/'" (x)y=M" ’2[// (M7 x _n)}nDZ IsrsM -1
becomes the orthogonal basis of W, Let

d,, =<, (0),0,,() >= VM [ @, ()@Mx = n)dx
then
@, (x)=VM Y d, ,@Mx - n)

Letp, =¢.n =d .r=1..-M-1,> and take h,, s low-

0,n Cps ran rn?

pass and 5 as high-pass coefficients, we have:

Sh, =AM, 0<rsM-l )
n0z
Moreover, the orthonormal property requires that
z 251 OFOR
5=0

Zh,,,r,,w: +Oeo kOZ, 0<r,r<sM-1 )

n0Z
Given a discrete signal {s} _ with finite energy, the

decomposition and reconstruction formulas are
kOZ, 0sr<M -1

h +Mk > - =
Z '/ l (3)

0z

7 = ZZhb n02Z

kOZ r=0
Define H(z)zizckzk . For an integer K 21, we say

K0z

H(z) has K vanishing moments, or H(z) is K-regular, if
there exists a Laurent polynomial O(z) such that

H(z) = (M(l ) 0(2)

For a fixed positive integer &, 0 < k < K , the definition of
vanishing moments K is equivalent to any of following
statements:

(D) ¢g“@nm)=0, nOZ,n#0
(i) /20<“(2L”) =0, Os=1,..M -1

(i) s« e = _
Zn hy (e )" =0, Os=1,.,M -1

nzZ

With regard to (2) and H(0) =1, we know that /(z) has
at least 1 vanishing moment.

4. Construction of M-band wavelets with
compactly supported length LM



Let L =2 be a fixed positive integer. For simplicity, we
consider M =4 and L =2 firstly, while general cases
treated later. More precisely, we consider {n.}

1) 0<r<3,0sn<7 ’

4.1 case 1: M=4 and L=2

In order to establish the system of constraint equations on

{h } , perfect reconstruction conditions are needed,
rn)0<r<3,0sns7

as stated in Theorem 1.

Theorem 1. Perfect reconstruction conditions of

{h } for tranform (3) are
r.n)osr<3,0sns7

zhll r,j+4 :

r=0

0<i,j<3 4)

3
Z(hrxh) ) +h» z+4hr./+4) = Jz j

r=0

0<i,j<3

Proof: Let m=[n/4], for j=n-4m,(i=0,273), we have
n=4m+i,and

3
_zzhrn ~4kOr k z zh:nM( rk Z(hu m ,,+4 rml)

kOZ F 0 =0 k=m-1 r=

, th
Zh” » n

Sam+i = Zz(hm v Sams; TH, l+4hV,k/S4m+‘/*4)

=0 j=0
7
(gx/§4m+, 8iva jSamsej-a)

3
= zgxM jSam+j-a +Z(ng + &g jea)Sams) +zgu Am+j

Jj=0 j=0
To achieve perfect reconstruction, followmg equations
should be satisfied:

8iva,; =0 0<i,j<3
8 T 8irajes :a-i,j 0<i,j<3
which are equivalent to (4). i
Theorem 2. The constraint equation set for .} is
) 0<r<3,0sn<7
[LLL1]4 + B) =[2.0,04 (5)
AB=A4B'=0 (6)
AA+BB=AA+BB =1

where 4 and B are two 4x4 matrices, ), =

(B)., =h, s That is

hﬂ[) hlﬂ hZO h30 h04 hM h24 h34

A= hm hll h21 h}l B= hOS hIS hZS h35 (7)
hU2 hlZ hZZ h32 h()6 h]6 h26 h36
hUS h13 h23 h33 h()7 hl7 h27 h37

It can be easily proved with equation (1), (2) and (4).

The construction of 4-band filter bank {n.} is

7.nJ0<r<3,0sn<7
reduced to solve the constraint equation set (5) and (6).
Based on Singular-Value-Decomposition (SVD), we have

Theorem 3. Suppose a 4x4 diagonal matrix
D, =diag(d,,d,,d,.d,) > Where g4 =oor1 , a 4x4
orthonormal (i.e. real unitary) matrix ¢ =[a,,a,.a,,a,]-
where g is the i-th column vector, and another 4x4

orthonormal matrix y =[8,, 8., 8, 3,]> Where
3
-lZa,.,, 0<i<3 (®)
=

and g is the first element of g, and let p =7 -p,, then
A=Up,y' and p=yp,y' are the solution of equations (5)
and (6).

Proof: (i) Any nxn matrix 4 can be written in SVD form
A=UDV', where U and V are both nxn orthonormal
matrix, yU' =1, vv'=1, U' is transpose of U, and D is a
diagonal matrix with non-negative diagonal entries. Let
U=la,,,a,] V :[ﬁm'“,ﬁn—l] and D =diag(d,,--,d,) »
then we have

n-1 , (9)

A=UDV'=% da,pB
i=0

where 5 and p are n-dimensional column vectors, and
d, = 0. Therefore, it is easy to rearrange 4, freely, usually

in descending order, if we exchange the corresponding
columns in U and ¥ simultaneously.

(i) Let A=UDJV' and p=ypy'. Clearly, if D, and p,

satisfy
D,D, =0 (10)
Dy +D! =1

then 4 and B are the solution of (6). Let
D, = diag(d,.d,.d,.dy)- From p? +p? =1, we get

D, =diag(1~d} 1-d} \1-d} \1-d2) -
With regard to p p =0, we have 4 1-4> =0, 0<i<3-

Therefore, d, =0orl for 0<i<3,and D=1-D,

(iii)) With above results, condition (5) can be formulated

as [i1L1u, + D)V =[L1L]ur =[2,0,0, . and we obtain
3

[Linju =[2000 - Then, we have 5 _Lsv; =~ ggic3

which shows that the first row of V' is determined by U.
Note that the ﬁrst row of ¥ has been normalized to 1 since

> By = Z(Zcm

i=0 n=0
1 3
:ZZ[I +2(aioail +a,,a, 0,0, +a,0, +a,0; +aiza‘3)]
i=0
1 3
=1 +52(0‘.00’,1 0,0, Y00 0,0, 0,05, +ai2ai3)
i=0

=1+%(0+0+0+0+0+0)=1

(iv) The method to design the filter banks is constructive.
Firstly set p, =diag(d,.d,.d,.d,) » d,=0or1 for 0<i<3
and p =7-p,. Secondly, choose one 4x4 orthonormal



matrix ¢ =[a,.a,,a,,a,]- Finally, set the first row of V' to

meet (8), with other three rows extended by Schmidt
orthonormalization process, we have 4=ypy' and

B=UD,V' to be the solution of the equations (5) and (6). O

One question is: does theorem 3 give all the solutions for
(6)? The answer is yes, as Theorem 4 followed.

Theorem 4. For 4x4 matrices A, B and their SVD
A=U,DV, and p=y,py;,if A and B are the solution of

the equation system (6), then p =7-p,, orthonormal
matrices ¢, and y, satisfy o =gy, = (q;) where q,=0>
0<i<s-1, s<j<3, s =r(4) denotes the rank of 4, and
orthonormal matrices y, and y, satisfy p=py =(p )
iy

where p, =0,0<iss-1,5</<3.

Proof: (i) With regard to 4'B=0 , we get
r(A)+r(B)=r(4)+r(B)s4 - From L4+BB=1, we get
r(A)+r(B)=r(AA)+r(B'B)=4
r(4)=r(4'4) by SVD). Therefore, ,(4)+rB)=4 and

(Actually we have

r(By=4-s. Let 4=y py; and p=y py; both in SVD
form, then we can take the singular matrices as
D, =diag(d,,---,d,_,0,---,0) > D, =diag(0,---,0,d,---,d,) >

d, >0 0<i<n-1.

s=10

(i) From j=g4+pB=V,DV;+V.DV , We get
DV, +VV,D} =V, - Set p=ypiy = (p,) » Wwe have
D}P+PD} =P, 0r pp’p=]-p?. Hence,
s-1
(P'D;P), ;=Y d;pupy. 0<i,j<3
k=0

s-1
(P'D;P),, =Y d;p; 20, 0<i<3
k=0
So ¢ <1, s<i<3. Similarly, we have pp?p'=7-p? to

conclude that d <1s 0<i<s-1. Thus, 0<d <1,0<i<3.

(iii) From o= 4pB= V,DULUDY, » We have DUWU,D, =0 -
Set g = U, = (g,)" Using notations of matrix blocks,

DOQD1:|:DOO 0}|:Q0 Q1:||:0 0}:|:0 D00Q1D101|
0 010, O,]0 D, 0 0

(D@ D)y =diq,,d,;, 0<iss—1,s<j<3
It concludes that g, =0, or q,=0>0Siss=1, s< /<3,
From 4B'=0, we have p pp =0 . Similarly we get

1z =0,0<i<s-1, s<;<3.

(iv) Because p, =0,0<iss-1,5< <3, it concludes that
y

d =1>5s<j<3 since

s=1
1-d} =(P'DyP),, = ;d; pi; =0, s<j<3

Also from pp?p'=7-p?2, we get ¢ =1, 0<i<s—1 with

3
1=d} =(PDP"),, =) .d;p}, =0, 0<i<s~1
k=s
In summary, d,=1,0<i<3.

(v) Also we need to derive the relationship between p,

and y, and U, and y,. From p = vy, we get

P{% "}:VO'VI {VU’O VO;} {VW Vn}
P A Vo Vel e Vs
- |:VO'OI/10 +V0'2V'12 VO’OVVII +V0’2I/13:|
VO'IV]O + V()'3V12 VO’]VH + VO,3V13
It concludes that the first s columns of y; are orthogonal
to the last (4-5) columns of y . Similarly, the first s
columns of U, are orthogonal to the last (4-5) columns

of y,. i

Formula (9) shows that A is only related to the first s
columns of U, and v,» B only related to the last (4-y)

columns of ¢, and y;. Therefore, how to choose the last
(4-s) columns of U, and v, makes no difference.

Particularly, we could choose 7, =y, and y, =y, while

P:Q:].
4.2 case 2: L=2 for any M > 2

In this case the constraint equation system is still (5) and
(6), but with dimension M. Also, the solutions above are
valid. The scale factor M controls the dimension of
matrices in constraint equation set and solutions. So we
ignore the difference in M later.

4.3 case 3: L>2

In this case, the constraint equation set consists of L
matrices denoted as {4, 4,,-.-,4, } - For example, when

M=4 and L=4, the constraints equations are

[LLLI 4, + 4, + 4, + 45) =[2,0,0, (11)

AVd, = 4,4, =0

AA AL = AL AL =0 (12)
04%2 1493 = Ao 1493 =

AA +AA + LA, = A A+ A A+ A, 4, =0

AgAy + AJA + AL A, + LA, = Ay Ay + A A + A, A, + A A =T
while (12) appears to be formed by shifting and
intersection of two sequences of {4 4, .-, 4} -
Though Theorem 4 is not valid for this case, we still get
partial solutions by the ways described in Theorem 3.
That is, the same U and ¥ are employed in the SVD form
forallthe {4 4, -, 4} -Let 4 =upy', 0<i<3.ltis easy

to see that (12) is satisfied if



D,D, =0
D,D, +D,D, =0 (13)
02 1~3 =
D,D, +D,D, +D,D; =0
D; +Df +D; +D; =
It concludes that the diagonal entries of p are 0 or 1, and
each p has just one 1 on the diagonal to avoid 4 =¢.Ina

similar manner, (8) is required to meet (11). The
limitation of this method is, some 4 has to be 0 when

L=M , so more general solutions are desirable to
construct longer filters when > .

5. Vanishing moments 2 for M=4 and L=2

5.1 Constraint formula for scaling filter

Scaling filter {n.} > or {n} for simplicity, having 2

vanishing moments requires:

PNACIEDWACHEED NN (14)
n0zZ iz a0z

Y nh, (=)' =Y nh, (=1)" =Y nh,i" =0 (15)
nz niz n0z

Formula (14) is always true since any scaling filter has at
least 1 vanishing moment. Formula (15) is shift-invariant
if the first condition becomes true:

D (n+ pYh, (=)™ = (=i)* Y nh, (=)' + py_ b, (=i)")
= (i)"Y nh, (=)

For M=4 and L=2, formula (15) is equivalent to

hO
hl
0 i -2 -3 45 -6 -7 e
0 -1 2 -3 4 -5 6 -7 Z-‘
0 -i -2 3 4 -5 -6 Ti ¢
hs
h6
h,

(=2h, +4h, —6hy)+i(h, —3h +5h, = Th,)] [0
=|=h +2h, =3h, +4h, =Sh, +6h, ~Th, |=]0
(=2h, +4h, —6h,) = i(h, —3h, +5h, =Th,)| |0
Then we have
hy, =2h, +3h, =0
h,=3hy +5h, =Th, =0
—hy +2h, =3h, +4h, = 5h, +6h, —Th, =0
If take hy g, h, S free parameters, we get

(16)

hy =2—§h4 +4hg + 2h, +§h7

h, = 4h, = 5h,

h, =2h, - 3h,
4 7

h3 :§h4 _§h7

5.2 Scaling filter construction

Let 4=upy’ and p=ypy' as defined in Theorem 3,

D, =diag(dyy,dy,,dy,,dy3) > and D, =diag(d,y.d,,.d\,,d\;) =1 =D, >
where 4, =0or1, from (8) we have

3

Voi =%Zu”k, 0<k<3 (17
n=0

The scaling filter, i.e. the first column of 4 and B, can be

written with ,, as:
if

3 1 3 3 .
h; :Zduk”ik"uk :*zzduk”m”nk’ 0<i<3 (18)
k=()3 2 /\'=03n*()’;
1 N .
iy :Zdlkuikvok =§sz1k”‘k”nk’ 0<i<3
k=0 k=00

Casel: d =0,d,, =d, =d,; =1

If substitute (18) into (16), we get
ivok [duA Quy) +dy (Z4ug, +6uy, )] =0 (19)

k=0

3
Z"oz [dw (e =3y ) +dyy (Suy =Ty, )] =0
=0

3
Z Vok [d!)k (=t +2uy, =3uy, ) +dy (Aug, = Suy +6uy —Tuy, )] =0

k=0

Then we have

3 33
zuno(_“'“on +611y,) + Zzunk (2u,,) =0

n=0 k=1 n=0
3

33
zuno(suw = Tuyy) + zzunk (uye =3u3) =0

n=0 k=1 n=0

3 303
zullo(4u()() _5”10 + 6“20 - 7”30) + zzunk (_ulk + 2”2A- _3u3k) =0

n=0 k=1 n=0
Because
303 303
zzunkui}; = z(zunkuik Ul yp)
k=1 n=0 n=0 k=0

3 3
= 2(5,,,1 ~,ly) =1 _zunn“,n’ 0<i<3
=0

n=0
we have

3 1
(=ttgo +“20)Z”n0 ==
=0

2
3 1
(uyo _”30)2”»,0 = 5
=0
3 1
(oo =ty Ty ~Us )Z”nu ==
=0 2
Then it concludes that

3
zufo =1
n=0
3 1
(mtgy Fity )zun() = _5

n=0
Quyy = uyy g,
Ugg Filyy =g Ty
Let 4 Sugg,b Sy, ¢ Sy, d Sy then
a’+b*+c*+d’ =1
(—a+c)(a+b+c+d)=—%
2c=b+d
a+td=b+c




3c—a

@ e+ (20 r 0 =
1
a-c)(a+3c)=—
(a=c)( ) 2
b= a+tc
2
d= 3c—a
2
We have a simplified equation system involving a and c:
a’ +c? ZE
8

2a* +4ac -6¢* =1
To solve it, we find four solutions, which are shown in
Table 1. Then we can compute scaling filter {5 } as:

0=n<7
1 3
h, =5(1—u,.02u”0), 0<i<3
n=0

-h, 0<i<3

| =

For four solutions of a, b, ¢ and d, however, results of
{n},.., are the same as the first column of Table 2, except

for the difference in the reverse order.

Case2: d, =d, =0,dy, =d, =1

Let , =iunz, B =iu”3 . From (19) we get

n=0

1
(Ugy =y ) + (ugy —ttyy) = _E
Uy =2uy Fus )A + (U = 2uy +uy) =0

(Ugy =ty Uy, +p, )+ (Ugy —Uy; ~ Uy +Uuy) =0

Scaling filters can be computed from the last two columns
of U:

h; =%(ui20+udﬁ), 0<i<3
By ===, 0<i<3

We can compute the last two columns of U to obtain
scaling filters. However, it seems that the scaling filters
obtained are the same as the first column of Table 2.

Case 3: dOO = dOl = d02 = 0’d03 :1

Similar to case 1, we get

3 1
(ugy —uy )zunfi ==
= 2

3 1
(uy5 _u33)zun3 ==z
=0 2
3 1
gy =ty Fuy _uss)zuns =7
= 2
Let a= ”o3>b =u,,c= uZS’d =gy then
3
a’+c’ ==

2a* +4ac—6¢*+1=0
b= atc

_ 3c—a
2
Scaling filter {5} can be computed as follows:

d

3
h, =lu‘.32u”3, 0<i<3
2 =
ho=i-h, 0sis3
2
In like manner, no new scaling filters are found for this

case.

6. Conclusions

This paper gives an algebraic approach to construct M-
band orthonormal wavelet bases, which enable us to
obtain innumerable wavelet bases for selection. Also we
give another way to compute 2-regular M-band filter
banks. Our future work is to compute longer filter banks,
to integrate the linear-phase property if possible, and to
find better filters for wavelet-based image coding.
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Table 1: 4 solutions of a, b, ¢, d in case 1

a | -0.6742287 0.7876647 0.6742287 -0.7876647
b | -0.5435215 0.3599783 0.5435215 -0.3599783
c | -0.4128143 -0.0677081 0.4128143 0.0677081
d | -0.2821070 -0.4953944 0.2821070 0.4953944

Table 2: filters for M=4, L=2 with 2 vanishing moments

h()n hln th h3n
0.2697890 | -0.2825435 | 0.4125840 | 0.2382055
0.3947890 | 0.5553379 | -0.6279376 | 0.1088646
0.5197890 | 0.2385187 | 0.3727824 | -0.7275830
0.6447890 | -0.0783004 | 0.1487574 | 0.5572896
0.2302110 | -0.5834819 | -0.4125840 | -0.2382055
0.1052110 | -0.2666627 | -0.1885590 | -0.1088646

-0.0197890 | 0.0501564 | 0.0354659 | 0.0204763
-0.1447890 | 0.3669755 | 0.2594909 | 0.1498171




