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Abstract 
 
This paper presents an algebraic approach to construct M-
band orthogonal wavelet bases. A system of constraint 
equations is obtained for M-band orthonormal filters, and 
then a solution based on SVD (Singular Value 
Decomposition) is developed to enable us to produce 
innumerable wavelet bases of given length. Also the 
property of 2 vanishing moments is integrated into our 
wavelet construction process, which provides another way 
to compute 2-regular M-band filter banks.  
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1. Introduction 
 
It is well known that 2-band orthogonal wavelets suffer 
from severe constraint conditions, such as nontrivial 
symmetric (linear-phase) orthogonal wavelets do not exist. 
Biorthogonal wavelets, multiwavelets, and M-band 
wavelets are designed as alternatives for more freedom 
and capacities. This paper devotes to M-band wavelets 
construction.  
 
The design of M-band linear phase filter bank has been 
investigated in [1]. Similar work was published in [2] but 
based on time-domain constraints and only for M=2i. In [3] 
and [4], filters of K vanishing moments (or stated as K-
regular) and finite length are constructed.  Scaling filters 
are computed based on unitariness and autocorrelation, or 
maximal flatness condition. Then matrix extension by 
polyphase decomposition, or state-space characterization 
is used to construct the (M-1) wavelet filters, though not 
uniquely determined by the scaling filter (unlike the 2-
band case). Biorthogonal M-band filters are designed 
using lifting scheme in [5].  
 
Following the idea presented in [6] for 2-band 
biorthogonal wavelets, in this paper an algebraic approach 
is proposed to construct M-band wavelets by solving the 
constraint equations.  In contrast with Fourier-based 
methods focusing on a few deliberate filters, our algebraic 
approach gives the explicit formula with some free 
parameters to produce innumerable wavelet bases, among 
which we can find appropriate ones for specific 
applications.  

 
The rest of this paper is organized as follows. Section 2 is 
a brief review of algebraic approach on 2-band 
biorthogonal wavelets construction. Section 3 introduces 
some background knowledge of M-band wavelets. Our 
algebraic method is presented in Section 4 to construct M-
band orthonormal wavelet bases.  In Section 5, conditions 
of two vanishing moments are derived and integrated into 
our construction method, with the direct results being the 
well-known Daubechies scaling filters.  The conclusions 
are summarized in Section 6.  
 
2. Review of the algebraic approach for 2-
band biorthogonal wavelets 
 
Let Z denote the set of all integers and )(xϕ , )(~ xϕ  be two 
scaling functions satisfying the double scaling equations 
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The corresponding wavelet functions are 
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where Znhghg n
n

nn
n

n ∈−=−= −− ,)1(~,~)1( 11
. Usually, we take 

nn hh ~,  as low-pass and 
nn gg ~,  as high-pass coefficients if  

0~,2~ ==== ∑∑∑∑ ∈∈∈∈ nZnnZnnZnnZn gghh  
In addition, the linear phase property requires 

Znhhhh nnnn ∈== −− ,~~, , and the biorthogonal conditions 
imposed on )(xϕ , )(~ xϕ , )(xψ  and )(~ xψ  are equivalent to  
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where 1=jδ  when 0=j  and 0=jδ  otherwise.   
Given a discrete signal { } Znna ∈

 with finite energy, the 
discrete biorthogonal wavelet transform 
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decomposes { } Znna ∈
 into { } Zkkc ∈

 and { } Zkkd ∈
, and the inverse 

transform Zndgcha
Zk

kkn
Zk

kknn ∈+= ∑∑
∈

−
∈

− ,~~
22

 reconstructs 

{ } Znna ∈
. Therefore, the perfect reconstruction (PR) 

condition is  
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which is proved to be equivalent to  
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Consequently, a system of the constraint equations of 
biorthogonal wavelets can be derived as  
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Considering the 5-7 tap case as an example and let  
nnnn hqhp ~2,2 == , we have the constraint equation 

system as:  
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If we take 2p  as a free parameter, then the solution is  










==−=

−=−=−=
−
+

=

−±

±±±

22120

3120223
2

2
2

,
2
1,21

2
1,21,2,

)14(4
14

ppppp

qqqqqpq
p

p
q  

For 1.02 −=p , we get the 5-7 tap Daubechies 
biorthogonal filters. In a similar manner, we can get the 9-
7 tap Daubechies biorthogonal filters. 
 
3. Background material on M-band wavelets 
 
Let 2≥M  be a fixed positive integer. A family of closed 
subspaces )( ZjVj ∈  in square integrable function space 2L  

is called a multiresolution of 2L  if the following 
conditions hold: 
    (i) 

1−⊂ jj VV , and 
jVf ∈  if and only if 

1)( −∈• jVMf  for all 

Zj ∈ ; 
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    (iii) { }Znn ∈−• );(φ  is an orthonormal basis of 0V  for 
some 

0V∈φ  .  
The function φ  in (iii), called M-band scaling function, 
satisfies the refinement equation 
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It can be proved that there exist 
11 ,, −Mψψ L  such that  
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nh ,0

 as low-
pass and 
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Given a discrete signal { } Znns ∈
 with finite energy, the 

decomposition and reconstruction formulas are  
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zH 1)( . For an integer 1≥K , we say 

)(zH  has K vanishing moments, or )(zH  is K-regular, if 
there exists a Laurent polynomial )(zQ  such that 

)()
)1(

1()( zQ
zM

zzH K
M

−
−=  

For a fixed positive integer k, Kk <≤0 , the definition of 
vanishing moments K is equivalent to any of following 
statements: 
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With regard to (2) and 1)0( =H , we know that )(zH  has 
at least 1 vanishing moment.  
 
4. Construction of M-band wavelets with 
compactly supported length LM 
 



Let 2≥L  be a fixed positive integer. For simplicity, we 
consider 4=M  and 2=L  firstly, while general cases 
treated later. More precisely, we consider { }

70,30, ≤≤≤≤ nrnrh .  

 
4.1 case 1: M=4 and L=2 
 
In order to establish the system of constraint equations on 
{ }

70,30, ≤≤≤≤ nrnrh , perfect reconstruction conditions are needed, 

as stated in Theorem 1.  
 
Theorem 1. Perfect reconstruction conditions of 
{ }

70,30, ≤≤≤≤ nrnrh  for tranform (3) are 
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Proof: Let [ ]4/nm = , for )3,2,1,0(,4 =−= imni , we have 

imn += 4 , and  
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To achieve perfect reconstruction, following equations 
should be satisfied: 
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which are equivalent to (4).                                              □ 
 
Theorem 2. The constraint equation set for { }

70,30, ≤≤≤≤ nrnrh  is  
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where A and B are two 44 ×  matrices, 
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It can be easily proved with equation (1), (2) and (4).  
 
The construction of 4-band filter bank { }

70,30, ≤≤≤≤ nrnrh  is 

reduced to solve the constraint equation set (5) and (6). 
Based on Singular-Value-Decomposition (SVD), we have 
  

Theorem 3. Suppose a 44 ×  diagonal matrix 
),,,( 32100 dddddiagD = , where 1or  0=id , a 44 ×  

orthonormal (i.e. real unitary) matrix ],,,[ 3210 αααα=U , 
where 

iα  is the i-th column vector, and another 44 ×  
orthonormal matrix ],,,[ 3210 ββββ=V , where  
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and 
0iβ  is the first element of 

iβ , and let 
01 DID −= , then 

VUDA ′= 0
 and VUDB ′= 1

 are the solution of equations (5) 
and (6).  
 
Proof: (i) Any nn ×  matrix A can be written in SVD form 

VUDA ′= , where U and V are both nn ×  orthonormal 
matrix, IUU =′ , IVV =′ , U ′  is transpose of U, and D is a 
diagonal matrix with non-negative diagonal entries. Let 

],,[ 10 −= nU αα L , ],,[ 10 −= nV ββ L  and ),,( 10 −= ndddiagD L , 
then we have  
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where 
iα  and 

iβ  are n-dimensional column vectors, and 

0≥id . Therefore, it is easy to rearrange 
id  freely, usually 

in descending order, if we exchange the corresponding 
columns in U and V simultaneously.  
 
(ii) Let VUDA ′= 0

 and VUDB ′= 1
. Clearly, if 

0D  and 
1D  
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



=+

=

IDD

DD
2

1
2
0

10 0                                                                 (10) 

then A and B are the solution of (6). Let 
),,,( 32100 dddddiagD = . From IDD =+ 2

1
2
0
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    )1,1,1,1( 2
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2
01 dddddiagD −−−−=  . 

With regard to 010 =DD , we have 30,01 2 ≤≤=− idd ii
. 

Therefore, 1or  0=id  for 30 ≤≤ i , and 
01 DID −= .  

 
(iii) With above results, condition (5) can be formulated 
as [ ] [ ] [ ]0,0,0,21,1,1,1)(1,1,1,1 10 =′=′+ VUVDDU , and we obtain 
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(iv) The method to design the filter banks is constructive.  
Firstly set ),,,( 32100 dddddiagD = , 1or  0=id  for 30 ≤≤ i  
and 

01 DID −= . Secondly, choose one 44 ×  orthonormal 



matrix ],,,[ 3210 αααα=U . Finally, set the first row of V to 
meet (8), with other three rows extended by Schmidt 
orthonormalization process, we have VUDA ′= 0

 and 

VUDB ′= 1
 to be the solution of the equations (5) and (6). □ 

 
One question is: does theorem 3 give all the solutions for 
(6)? The answer is yes, as Theorem 4 followed. 
 
Theorem 4. For 44 ×  matrices A, B and their SVD 
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the equation system (6), then 
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10 −≤≤ si , 3≤≤ js , )(Ars =  denotes the rank of A, and 
orthonormal matrices 
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1V  satisfy )(10 ijpVVP =′=  

where 0=ijp , 10 −≤≤ si , 3≤≤ js .  
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So 1≤id , 3≤≤ is . Similarly, we have 2
0

2
1 DIPPD −=′  to 

conclude that 1≤id , 10 −≤≤ si . Thus, 10 ≤< id , 30 ≤≤ i .  
 
(iii) From 

111000 VDUUDVBAO ′′=′= , we have ODUUD =′ 1100
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Set )(10 ijqUUQ =′= . Using notations of matrix blocks,  
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It concludes that 01 =Q , or 0=ijq , 10 −≤≤ si , 3≤≤ js . 
From OBA =′ , we have OPDD =10

. Similarly we get 

0=ijp , 10 −≤≤ si , 3≤≤ js .  
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In summary, 1=id , 30 ≤≤ i .  
 
(v) Also we need to derive the relationship between 
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1V , and 
0U  and 

1U . From 
10VVP ′= , we get 
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It concludes that the first s columns of 
0V  are orthogonal 

to the last )4( s− columns of 
1V . Similarly, the first s 

columns of 
0U  are orthogonal to the last )4( s−  columns 

of 
1U .                                                                                □ 

 
Formula (9) shows that A is only related to the first s 
columns of 

0U  and 
0V , B only related to the last )4( s−   

columns of 
1U  and 

1V . Therefore, how to choose the last 
)4( s−  columns of 

0U  and 
0V  makes no difference. 

Particularly, we could choose 
10 UU =  and 

10 VV = , while 

IQP == .  
 
4.2 case 2: L=2 for any M ≥ 2 
 
In this case the constraint equation system is still (5) and 
(6), but with dimension M. Also, the solutions above are 
valid. The scale factor M controls the dimension of 
matrices in constraint equation set and solutions. So we 
ignore the difference in M later.  
 
4.3 case 3: L>2 
 
In this case, the constraint equation set consists of L 
matrices denoted as { }110 ,,, −LAAA L . For example, when 
M=4 and L=4, the constraints equations are  

[ ] [ ]0,0,0,2)(1,1,1,1 3210 =+++ AAAA                                  (11) 
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while (12) appears to be formed by shifting and 
intersection of two sequences of { }310 ,,, AAA L .  
Though Theorem 4 is not valid for this case, we still get 
partial solutions by the ways described in Theorem 3. 
That is, the same U and V are employed in the SVD form 
for all the { }310 ,,, AAA L . Let VUDA ii ′= , 30 ≤≤ i . It is easy 
to see that (12) is satisfied if 
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It concludes that the diagonal entries of 
iD  are 0 or 1, and 

each 
iD  has just one 1 on the diagonal to avoid 0=iA . In a 

similar manner, (8) is required to meet (11). The 
limitation of this method is, some 

iA  has to be 0 when 
ML ≥ , so more general solutions are desirable to 

construct longer filters when ML ≥ .  
 
5. Vanishing moments 2 for M=4 and L=2 
 
5.1 Constraint formula for scaling filter  
 
Scaling filter { }nh ,0

, or { }nh  for simplicity, having 2  
vanishing moments requires: 
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Formula (14) is always true since any scaling filter has at 
least 1 vanishing moment. Formula (15) is shift-invariant 
if the first condition becomes true: 
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For M=4 and L=2, formula (15) is equivalent to  
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Then we have 
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If take 
7654 ,,, hhhh  as free parameters, we get 
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5.2 Scaling filter construction 
 

Let VUDA ′= 0
 and VUDB ′= 1

 as defined in Theorem 3, 
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The scaling filter, i.e. the first column of A and B, can be 
written with 

iju  as: 
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Case 1: 1,0 03020100 ==== dddd  
 
If substitute (18) into (16), we get  
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Then we have 
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Because  
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Then it concludes that 
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We have a simplified equation system involving a and c: 
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To solve it, we find four solutions，which are shown in 
Table 1. Then we can compute scaling filter { } 70 ≤≤nnh  as:  
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For four solutions of a, b, c and d, however, results of 
{ } 70 ≤≤nnh  are the same as the first column of Table 2, except 
for the difference in the reverse order.  
 
Case 2: 1,0 03020100 ==== dddd   
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Scaling filters can be computed from the last two columns 
of U: 
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We can compute the last two columns of U to obtain 
scaling filters. However, it seems that the scaling filters 
obtained are the same as the first column of Table 2.  
 
Case 3: 1,0 03020100 ==== dddd   
 
Similar to case 1, we get  
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Let 
33231303 ,,, uducubua ==== , then 
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Scaling filter { } 70 ≤≤nnh  can be computed as follows:      
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In like manner, no new scaling filters are found for this 
case.  
 
6. Conclusions 
 
This paper gives an algebraic approach to construct M-
band orthonormal wavelet bases, which enable us to 
obtain innumerable wavelet bases for selection. Also we 
give another way to compute 2-regular M-band filter 
banks. Our future work is to compute longer filter banks, 
to integrate the linear-phase property if possible, and to 
find better filters for wavelet-based image coding.  
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Table 1: 4 solutions of a, b, c, d in case 1 
a -0.6742287  0.7876647 0.6742287 -0.7876647 
b -0.5435215  0.3599783 0.5435215 -0.3599783 
c -0.4128143 -0.0677081 0.4128143  0.0677081 
d -0.2821070 -0.4953944 0.2821070  0.4953944 

 
Table 2: filters for M=4, L=2 with 2 vanishing moments 

h0n h1n h2n h3n

 0.2697890 -0.2825435  0.4125840  0.2382055
 0.3947890  0.5553379 -0.6279376  0.1088646
 0.5197890  0.2385187  0.3727824 -0.7275830
 0.6447890 -0.0783004  0.1487574  0.5572896
 0.2302110 -0.5834819 -0.4125840 -0.2382055
 0.1052110 -0.2666627 -0.1885590 -0.1088646
-0.0197890  0.0501564  0.0354659  0.0204763
-0.1447890  0.3669755  0.2594909  0.1498171

 


