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ABSTRACT

In this paper, we present a novel scheme for automatic video
scene extraction. A pseudo-object-based shot representation
containing more semantics is proposed to measure shot similarity
and an force competition approach is proposed to group shots
into scene based on content coherences between shots. Two
content descriptors, color objects: Dominant Color Histograms
(DCH) and Spatial Structure Histograms (SSH), are introduced.
To represent temporal content variations, a shot can be
segmented into several subshots that are of coherent content, and
shot similarity measure is formulated as subshot similarity
measure. With this shot representation, scene structure can be
extracted by analyzing the splitting and merging force
competitions at each shot boundary. Experiment on MPEG-7
test videos achieves promising results by the proposed algorithm.

1. INTRODUCTION

Video is a temporal media with huge amount of data, which
cannot be easily organized and managed. Automatic video
partitioning is the solution to segment video data into
hierarchical structures, i.e. shots and scenes. A shot is a
sequence of frames that are recorded contiguously, usually ended
with a camera cut or an edit special effect. A video scene is
referred to a group of consecutive shots taken place in the same
location, or more generally, they share the same semantics in
terms of time, place, objects or events.

Usually there are two steps to extract video scene structures after
shot boundary detection. The first step is to represent visual
content of one shot, and to define the similarity measure between
two shots. The second is to construct scene structures by time-
constraint shot clustering, or scene boundary detection. In most
previous works on scene extraction [1][2][3][4][5], shot
representation is rely on keyframe extraction and comparison, or
some simple activity measure is attached to the keyframe-based
shot representation scheme. Then, classical clustering algorithm
or simple peak detection is used to detect scene boundaries.
However, the limitation of keyframe-based shot representation is
that spatio-temporal information of videos is not fully exploited.
Also, when a sequence of shots is considered a scene, it is often
because they are semantically correlated rather than visual
similarity in term of keyframes.

In this paper, we present a scheme for automatic video scene
extraction with a new shot representation scheme and a new

scene boundary detection algorithm. Shots are represented with
the intrinsic spatio-temporal relationships by analyzing the color
and spatial content across time. Similar to [5], our approach first
decomposes the temporal variations of a shot into several
coherent sub-units called subshots. Subshots are indispensable
for describing visual content of one shot that has significant
content changes, such as panning from indoor to out of window.
Unlike [5] that employs motion information to achieve this task,
we utilize video color objects in a way that semantic content can
be inherently embedded to describe the spatio-temporal changes
of video content. To characterize visual content variations for
subshot extraction and representation, two content descriptors,
Dominant Color Histogram (DCH) and Spatial Structure
Histograms (SSH), are developed based on extracted color
objects. In addition, a new algorithm on scene boundary
detection is provided by analyzing the competition of splitting
and merging forces at each shot boundary.

The rest of this paper is organized as follows. In Section 2, we
first introduce in detail the new shot representation, including
DCH and SSH. Then we describe subshot extraction and shot
similarity measure based on DCH and SSH descriptors. Section
3 presents the scene extraction approaches based on the proposed
shot representation. Experimental results are given in Section 4
and the conclusion remarks are in Section 5.

2. SHOT REPRESENTATION

A new shot representation scheme that exploits the intrinsic
spatio-temporal relationships and contains plentiful semantics is
desirable to fulfill the task of scene extraction. This is because
scene is a group of shots that are semantically correlated and is a
subjective concept to reflect human perception. In this section,
we present a pseudo-object-based shot representation. That is,
we explore the spatio-temporal relationships of a “color object”,
which is defined as a color sphere in color space and a color-blob
in the frame image. Color is an effective yet computational
inexpensive feature, and integrating other information into color
features would be preferred to improve representation capability
without sacrificing efficiency. Two descriptors are introduced to
describe the spatio-temporal behavior of color objects: (1) DCH
that fuses temporal information into color histograms to capture
the most important colors according to temporal variations; and
(2) SSH that represents the spatial structural information for one
individual frame, providing complementary functionality to color
histograms that lack information about spatial distribution of
colors. Finally, to compactly represent one shot, subshot is



extracted by using DCH and SSH features, and shot similarity
measure is formulated based subshot similarity measure.

2.1 Dominant Color Histogram

Color histogram is popularly used in content-based image
retrieval (CBIR) for its simplicity and effectiveness. Therefore, it
is natural to extend the idea of color histogram to content-based
video retrieval. In [6], a set of color histograms called alpha-
trimmed average histograms is introduced for one group of
frames (GoF), including average histogram and median
histogram. We propose dominant color histogram, achieved by
dominant color extraction and tracking, to represent one GoF.
Dominant color histogram for one GoF depends not only on
dominant colors of individual frames, but also on their temporal
variations. Therefore, this representation meets the nature of
video as a temporal media. Dominant color histogram (DCH) is
distinctive from previous work with incorporating temporal
information and some semantic considerations.

Figure 1: Dominant color extraction and tracking.

In general, we can classify one GoF (a group of frames in one
shot that has single theme) into two types: focusing on the
environment, such as a street, without dominant foreground
objects; or focusing on static or moving objects, such as a car or
person. The focusing background or foreground objects should
have longer duration. We want to capture the colors of focused
objects by temporal variations and weigh them according to the
temporal duration. Firstly, pixels of each frame, or DC blocks in
I frames, are projected into quantized HSV cone space (shown in
Figure 1). Then find out local maximum points, and a sphere
surrounding each local maximum is defined as one color object
in 3D color space. These color objects in consecutive frames are
tracked to identify dominant color objects in one GoF, and more
weight are given to the color objects with longer duration since
they are more significant. Figure 1 shows this progress, and
more details can be found in [7].

2.2 Spatial Structure Histogram

Spatial information would be very important to describe the
global and local spatial configuration for one image. In [8] a new
concept called image structural feature is introduced, which is a
feature in-between texture and shape but more general. Water-
Filling Algorithm is proposed to extract structural features from
edge maps [8]. In this paper, we use color-blob maps to extract a
new set of features called Spatial Structure Histograms (SSH) to
describe spatial information for one video frame.

Firstly, color-blob maps are obtained by color quantization
(examples shown in Figure 2). Each color cluster in 3D HSV
cone space is extracted by K-means clustering due to its

computational simplicity and efficiency. The optimal number of
clusters, k, is obtained by using the cluster separation measure
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where
jη is the intra-cluster distance of the cluster j, and

ijξ is the

inter-cluster distance of cluster i and j. Note that the cluster
separation measure cannot handle the case of k=1. The K-means
algorithm is tested for k={1, 2, 3, …, 10}. We choose the cluster
number as 1, if the intra-cluster distance is lower than some
given threshold when k=1. Otherwise the cluster number is
identified by the lowest value for ρ(k), k>1. In our
implementation we use only the DC blocks of I frames, so ten
color clusters would be enough to capture the color distribution.
The potential problem is with texture regions that would create
numerous small color regions. However, it is effectively
depressed by the above cluster validity analysis that favors larger
color clusters.

Figure 2: Examples of segmented color-blob maps.
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where
jη is the intra-cluster distance of the cluster j, and

ijξ is the

inter-cluster distance of cluster i and j. Note that the cluster
separation measure cannot handle the case of k=1. The K-means
algorithm is tested for k={1, 2, 3, …, 10}. We choose the cluster
number as 1, if the intra-cluster distance is lower than some
given threshold when k=1. Or, the cluster number is identified
by the lowest value for )(kρ when k>1. In our implementation we
use only the DC blocks of I frames, so ten color clusters would
be sufficient to capture the color distribution for the general DC
images. The potential problem is with texture regions that would
create numerous small color regions. However, it is effectively
depressed by the above cluster validity analysis that favors larger
color clusters.

Several distributional features are extracted from color-blob
maps, including area histogram Harea, position histogram Hpos,
deviation histograms in X and Y direction, Hvx, Hvy, and span
histograms in X and Y direction, Hsx, Hsy. Area histogram is
computed as
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where Area(Rj) is the area percentage of color-blob Rj. Position
histogram is defined as
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where Center(Rj) is the centroid of color-blob Rj, and Block(i) is
the ith block with the image is equally divided into 16 blocks.
Deviation histogram in X direction is defined as
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where σx(Rj) is the standard deviation of color-blob Rj in x
direction, normalized by the image width. Hvy is similarly defined
except that σy(Rj) is normalized by image height. Span histogram
in X direction is defined as
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where Width(Rj) is the width of minimum bounding rectangle of
color-blob Rj, normalized by the image width. Hsy is similarly
defined except that Height(Rj) is normalized by image height.

Area histogram describes the spatial complexity of the image.
Position histogram is desired to identify similar spatial
configuration such as a close-up shot on the head and shoulder of
one player. Deviation histograms and span histograms represent
the shape distributions of the color-blob map. We found that the
span histograms are not rotation-invariant and not as robust as
others, so span histograms are not used in our experiments. The
spatial similarity between two images, a and b, is computed as
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where Sim0, Sim1, Sim2, and Sim3 are histogram similarity on
Harea, Hpos, Hvx, and Hvy, respectively, by using histogram
intersection. W0, W1, W2, and W3 are corresponding weights that
are equally set in our experiments.

2.3 Subshots Extraction and Shot Similarity
Measure

It would be better to segment one shot with significant content
variations into several subshots, because the aggregated
representation is unpredictable if we compose all the variations
into one feature vector, such as for one shot panning from indoor
to outdoor. We propose one simple subshot extraction algorithm
based on color and spatial structure changes, because subshot
should be of coherent visual content for compact representation.
Suppose the percentage of newly emerged dominant color bins is
p1, the difference of spatial structural histogram between the
current and previous I frame is p2. A new subshot is identified if
all the following conditions are true:

P1 > T1, and P2 > T2, and P1 + P2 > T3 (7)

where T1, T2, and T3 are predefined threshold (in our experiment
they are empirically set as 0.2, 0.2, 0.6). The similarity measure
of two shots, a and b, is defined as
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where Sim(ai,bj) is the similarity of the subshot i in shot a and the
subshot j in shot b, which can be computed in two ways:
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DchSim() is the similarity on DCH of two subshots, and SshSim()
is the similarity on average SSH for two subshots. Wc and Ws are
the corresponding weights that are equally set in our experiment.

3. SCENE BOUNDARY DETECTION

With the similarity measure between two shots defined, we have
developed a video scene boundary extraction approach based on
a competition analysis of splitting and merging forces. That is,
each shot is subject to two kinds of forces from its neighborhood.
One is the splitting force in two directions, from the previous
shots and the following shots, respectively. If the ratio of
splitting forces in two directions is large, there could be a
potential scene boundary. Another is the merging force between
the previous and following shots, preventing the current shot
being attracted by one side and trying to merge the previous and
following shots into the same scene. A simple rule-based
algorithm is used to detect the signal jumps on the two forces.

Considering the temporal constraints, i.e. shots that are closer to
each other in time are more likely to belong to the same scene,
the similarity score between two shots is weighted by temporal
attraction factor:

w = 1/(1+d/C) (10)

where d is the time span between the two shots (from the ending
frame of the previous shot to the beginning frame of the current
shot), and C is a constant (20 seconds in our implementation).

We define an splitting force to shot i from the previous shots as

Fs(i) = left(i) / right(i) (11)
where

left(i) = max{sim(i,i-1),sim(i,i-2),sim(i,i-3)}

right(i) = max{sim(i,i+1),sim(i,i+2),sim(i,i+3)}

The splitting force for current scene boundary candidate (i|i+1)
is defined as

Fs(i|i+1) = (Fs(i)+1/Fs(i+1))/2 (12)

The physical meaning of splitting force Fs(i|i+1) is the average
of splitting force to shot i from previous shots and splitting force
to shot i+1 from following shots.

The merging force for shot i is defined as
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Its physical meaning is the average attraction between previous
shots and following shots to shot i. The merging force for
current scene boundary candidate (i|i+1) is defined as

Fm(i|i+1) = (Fm(i)+Fm(i+1))/2 (14)

Then we normalize Fs(i|i+1) and Fm(i|i+1) to Fs’(i|i+1) and
Fm’(i|i+1) with following linear scaling to unit variance:
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It is guaranteed that 99% of Fs’(i|i+1) and Fm’(i|i+1) is in [0,1].

At an ideal scene boundary, (i|i+1), Fs’(i|i+1) should reach its
maximum and Fm’(i|i+1) should reach its minimum. However,
it is not always this case. Therefore, these two situations are
treated differently as following:

• Condition 1: Fs’(i|i+1) reaches its maximum and Fm’(i|i+1)
reaches its minimum simultaneously. A scene boundary is
identified if Fs’(i|i+1)>T1;



• Condition 2: Fs’(i|i+1) reaches its maximum, or Fm’(i|i+1)
reaches its minimum. If Fs’(i|i+1)>T2 and Fs’(i|i+1)-
Fm’(i|i+1)>T3, a scene boundary is declared.

where T1, T2, and T3 are predefined thresholds (set as 0.6, 0.7,
0.2, respectively, in our experiments) and the neighborhood is set
as [-2,2] to detect maximum and minimum.

4. EXPERIMENTAL RESULTS

Two MPEG-7 test videos are used to evaluate our algorithm on
scene boundary detection: lgerca_lisa_1.mpg and
lgerca_lisa_2.mpg. They are both home videos and each has
approximately 32,000 frames. Experimental results are listed in
Table 1 and 2. Figure 3 and 4 show the splitting and merging
forces for each video. In most cases, splitting force reaches its
maxima and merging force reaches its minima simultaneously at
one ground-truth scene boundary. Three false scene boundaries
in lgerca_lisa_1.mpg are caused by background differences and
lighting condition variations. In lgerca_lisa_2.mpg five scene
boundaries are missed, but the results are reasonable when
considering that scene is a subjective concept and different
human subject has different rules to extract scenes. The original
ground-truth scene boundaries defined by source provider are
arguable because scene 1 to 5 are taken in gym, scene 9 to 11 are
on stage, and scene 13 to 14 are in swimming pool. In summary,
the results are very promising compared with other approaches.
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Figure 3: Force competition for lgerca_lisa_1.mpg, with ground-truth
scene boundaries marked by a vertical line.
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Figure 4: Force competition for lgerca_lisa_2.mpg, with ground-truth
scene boundaries marked by a vertical line.

5. CONCLUSIONS

In this paper, we have presented an approach to extracting scene
structure by using a new shot content representation and a new
scene boundary detection algorithm. Our future work will be
focused on integrating new motion descriptors into color-object-
based shot representation to improve performance of the scene
extraction algorithm.
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Scene Scene Description Shots Correct Miss False

0
Kids learning roller-
skater

0-1 1|2

1 Kids playing in gym 2-15 15|16 12|13

2
Kid playing with
water with parents

16-24 24|25 21|22

3 Hot balloon event 25-42 42|43

4
Kids playing with
parent on lawn

43-51 51|52 47|48

5 Indoor exercise 52 \ \ \

Table 1: Scene boundaries for lgerca_lisa_1.mpg.

Scene Scene Description Shots Correct Miss False
0 Kids at home with cat 0 0|1
1 Kids in gym 1-5 5|6
2 Two kids playing high-

bar (Over-illuminated)
6-8 8|9 7|8

3 Kid + teacher 9-10 10|11
4 Kids jumping 11 11|12
5 Kids in Gym 12-13 13|14
6 Kids playing games in

Gym (Over-illuminated
14-24 24|25

7 Kids playing at home
(Dim lighting)

25-27 27|28

8 Kids driving outside
home

28-32 32|33

9 Kids dancing on stage
(Part I of Play)

33-36 36|37

10 (Part II of Play) 37 37|38
11 (Part III of Play) 38-39 39|40
12 After Play 40-50 50|51
13 Swimming Pool 51-52 52|53
14 Crowded Swim Pool 53-54 54|55
15 Kid’s party 55 \ \ \

Table 2: Scene boundaries for lgerca_lisa_2.mpg.


