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Compound Image Compression for Real-Time
Computer Screen Image Transmission
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Abstract—We present a compound image compression al-
gorithm for real-time applications of computer screen image
transmission. It is called shape primitive extraction and coding
(SPEC). Real-time image transmission requires that the compres-
sion algorithm should not only achieve high compression ratio,
but also have low complexity and provide excellent visual quality.
SPEC first segments a compound image into text/graphics pixels
and pictorial pixels, and then compresses the text/graphics pixels
with a new lossless coding algorithm and the pictorial pixels with
the standard lossy JPEG, respectively. The segmentation first
classifies image blocks into picture and text/graphics blocks by
thresholding the number of colors of each block, then extracts
shape primitives of text/graphics from picture blocks. Dynamic
color palette that tracks recent text/graphics colors is used to
separate small shape primitives of text/graphics from pictorial
pixels. Shape primitives are also extracted from text/graphics
blocks. All shape primitives from both block types are losslessly
compressed by using a combined shape-based and palette-based
coding algorithm. Then, the losslessly coded bitstream is fed into
a LZW coder. Experimental results show that the SPEC has very
low complexity and provides visually lossless quality while keeping
competitive compression ratios.

Index Terms—Compound image compression, compound image
segmentation, palette-based coding, shape-based coding, shape
primitive extraction.

I. INTRODUCTION

AS THE number of connected computers and other dig-
ital devices keeps growing, there has been a critical need

for real-time computer screen image transmission technologies.
Remote control software, such as AT&T virtual network com-
puting (VNC) [1], allows a person at a remote computer (the
client, maybe a Linux machine) to view and interact with an-
other computer (the server, maybe a Windows PC) across a
network, as if sitting in front of the other computer. A smart
display device, such as Microsoft Mira [2], acts as a portable
screen with 802.11b wireless connection to a nearby desktop
PC, enabling people to surf the web or browse pictures that are
stored on the desktop PC. Another application is wireless pro-
jector which provides the flexibility to site anywhere in the room
without cable connecting to the presentation computer.
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Data compression algorithms are essential for these real-time
applications, since a huge amount of image data is to be trans-
mitted in real time. One 800 600 true color screen image has
a size of 1.44 MB, and 85 frames/second produce more than
100-MB data. Without data compression algorithms, it is defi-
nitely impossible to transmit such a large volume of data over
the state-of-the-art bandwidth-limited networks in real time. Al-
though the network bandwidth keeps growing, compression al-
gorithms can achieve more efficient data transmission, espe-
cially for smart devices and wireless projectors.

Typically, there exist two ways to reduce the spatial and
temporal redundancy in the screen image sequence. The first is
to use image compression algorithms without any prior knowl-
edge of the images. The second approach is to use high-level
graphics languages and to exploit some prior knowledge pro-
vided by the operating system, such as updated regions, page
layouts, and detailed drawing operations. Clearly, if the prior
knowledge can be easily obtained, then text and graphics can
be efficiently represented by original drawing operations, and
only pictorial data need to be compressed. If the picture to be
displayed has been in a compressed form, its bitstream can be
directly transmitted. Thus, if the prior knowledge can be easily
obtained and effectively exploited, the task of screen image
compression can be perfectly fulfilled by drawing text strings,
rendering graphics, and encoding and decoding natural pictures
with traditional compression algorithms. However, there are
two difficulties involved in the use of the second approach.
One is the difficulty to obtain the useful prior knowledge from
existing operating systems. Until today, there is no operating
system having exposed its page layout information and detailed
drawing operations, not to mention any unique reliable stan-
dard. The other is the difficulty to apply the prior knowledge
to different client machines. With the difference of fonts and
GUIs existing on different platforms, there is little confidence
that the reconstructed screen image on the client resembles the
original screen image on the server. Moreover, these drawing
and rendering operations burden the client with a heavy com-
putational load, while the client, such as a smart display or a
wireless projector, commonly has very limited resources. In
contrast, the first approach based on screen image compression
is more reliable because of its platform independency. It is also
inexpensive because of its low complexity and avoiding legal
issues. We propose a hybrid algorithm which combines both
approaches to achieve better performance. Updated regions, for
instance, can be easily obtained from most platforms, and can
be effectively used to remove a significant amount of temporal
redundancies. This paper focuses on computer screen image
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compression. The issue how to obtain and exploit the prior
knowledge to facilitate compression is beyond the scope of this
paper.

This paper is organized as follows. In Section II, we briefly
review recent work on compound image compression. In
Section III, we provide a detailed description of the SPEC
algorithm, including system, segmentation, and coding. Exper-
imental results are presented in Section IV. Finally, the paper
is concluded in Section V.

II. COMPOUND IMAGE COMPRESSION

Computer screen images are mixed with text, graphics, and
natural pictures. Only in the past three years have we seen the
compression of computer generated images being studied. Li
and Lei [3] developed a lossless compression algorithm, in-
cluding intraplane coding and interplane coding. In [4], a modi-
fied JPEG-LS algorithm was proposed for lossless/near-lossless
coding. VNC [1] developed a simple rectangle-based lossless
coding, based on the assumption that GUI images are com-
posed of filled rectangles. The image is divided into 16 16
blocks, and each block is represented by a list of rectangles.
Raw data stream is recorded if the coded block data stream is
longer. Obviously, these lossless algorithms are ineffective for
natural pictures.

Another category of compound images is scanned document
images, and its compression has been intensively studied in
the past several years. In order to apply different compression
algorithms to different image types, usually a scanned image
is first segmented into different classes before compression.
Layer-based and block-based algorithms are two main methods
frequently used in the literature. Most layer-based approaches
use the standard three-layer mixed raster content (MRC) rep-
resentation [5], [6]. DjVu [7], [8] uses a wavelet-based coder
(IW44) for the background and foreground, and JB2 for the
mask. The segmentation is based on hierarchical color clus-
tering and a variety of filters. DigiPaper [9] uses JPEG for the
background, color tags for the foreground, and a token-based
representation for the mask. Its segmentation is a complicated
procedure, which involves connected components, shape co-
hesiveness, token comparison, etc. In [10], a layered coding
method is presented for check image compression. An adaptive
morphological filter is used for the segmentation.

Block-based approaches for scanned images are studied
mainly due to its low complexity. In [11], a rate-distortion
optimized segmentation was proposed by using block-thresh-
olding. Cheng and Bouman [12] investigated two segmenta-
tion algorithms (TSMAP and RDOS) to classify 8 8 blocks
into four classes (picture blocks, two-color blocks, one-color
blocks, and other blocks). In [13], Cheng and Bouman extended
this method for the application of the standard three-layer
MRC format. JPEG-matched MRC compression [14] first de-
composes each block into the standard three layers by using
vector 2-means method, then uses JPEG for foreground and
background layers and JBIG for mask layers. Li and Lei [15]
proposed a histogram analysis to classify each 16 16 block
into one of the four types: smooth block (one color), text
block (two color), graphics block (four color), and image block

(wavelet-based coding). GRAFIT [16] classifies 8 8 blocks
into four modes and use different coding methods for each
mode.

For real-time computer screen image transmission, the com-
pression algorithm should not only achieve high compression
ratios, but also have low complexity and visually lossless
quality. Low complexity is very important for real-time com-
pression, especially on smart displays and wireless projectors.
On the other hand, poor image quality reduces the readability
of the text and results in unfavorable user experience.

Scanned image compression algorithms can not be directly
applied to the real-time compression of computer screen im-
ages, due to following significant differences between scanned
images and computer screen images.

A. Source

Scanned images are captured by an electronic imaging proce-
dure, whereas computer screen images are essentially synthetic
images. Photographic image compression algorithms, such as
JPEG or JPEG-2000, are still applicable to scanned images,
and their performance can be improved by adopting different
qualities for text/graphics and pictures. In fact, most scanned
image compression algorithms use JPEG for background and
foreground layers, and use JBIG2 for mask layers. Ringing ar-
tifacts caused by DCT or wavelet transform are not clearly vis-
ible around text/graphics edges, because these edges have been
blurred in printing or scanning procedures. However, for com-
puter screen images, these ringing artifacts are easily noticeable
due to the sharp edges of text/graphics.

B. Spatial Resolution

Scanned images typically have higher spatial resolution than
computer screen images. The minimum acceptable quality for
scanned images is 300 dpi, whereas, for screen images, it is less
than 100 dpi. Block-based approaches work well for scanned
images, but cause severe artifacts for computer screen images.
Any tiny alteration to periods, such as “i” dots and thin lines,
can make the computer screen image barely readable.

C. Noise Level

Scanned images invariably contain some amount of noise,
while computer screen images are free of noise. Therefore, for
computer screen images, any noise introduced in compression
is noticeable in text/graphics regions.

D. Computational Complexity

Real-time compression algorithms require very low com-
plexity, whereas scanned image compression does not have
such a requirement.

In this paper, we propose a low complexity and high quality
compression algorithm—shape primitive extraction and coding
(SPEC). SPEC accurately segments text/graphics from pictures,
and provides a new lossless coding method for text/graphics.
SPEC has two unique features.

1) Shape and Color: In the area of content-based image re-
trieval, image contents often refer to color, texture, shape, and
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Fig. 1. Flow chart of the SPEC system.

motion (only for video). In SPEC, shape and color serve as
two basic features to effectively separate text/graphics from nat-
ural pictures. Image blocks are classified into picture blocks
and text/graphics blocks by thresholding the number of colors
of each block, and then shape primitives of text and graphics
are extracted. In addition, shape-based coding and palette-based
coding are combined to encode text and graphics losslessly.

2) Segmentation and Coding: The segmentation extracts
text and graphics pixels as shape primitives, and these shape
primitives are exploited in the coding stage. Unlike other
compound image compression algorithms, segmentation and
coding are tightly integrated in the SPEC algorithm.

III. SPEC—THE PROPOSED ALGORITHM

A. System

As shown in Fig. 1, the proposed SPEC algorithm con-
sists of two stages: segmentation and coding. The algorithm
first segments 16 16 nonoverlapping blocks of pixels into
text/graphics class and picture class, and then compresses
text/graphics with a new lossless coding algorithm and pictures
with lossy JPEG, respectively. Finally, the lossless coded data
and the JPEG data are put into one bitstream.

There are several reasons for choosing a 16 16 block size.
In a 16 16 block, a pixel location ( , ) can be represented
by 4-bit and 4-bit , totally just one byte. Similarly, the width
and the height of a rectangle in such a block can be represented
by 4-bit and 4-bit . In practice, this block size achieves a
reasonable tradeoff for computer screen images. Additionally, it
is easy for JPEG to compress such a block, if the chrominance
subsampling is applied.

SPEC separates image into two classes of pixels: text/
graphics and pictures. In block-based approaches, there are
generally four types of blocks: smooth background blocks (one
color), text blocks (two color), graphics blocks (four color),
and picture blocks (more than four colors). In fact, the first
three types can be grouped into a larger text/graphics class,
which greatly simplifies the segmentation. More importantly,
the combined text/graphics class can be coded by a lossless
method.

Fig. 2. Text samples from two webpage images.

Shape primitives refer to those elementary building units that
compose text/graphics in a compound image, such as dots, lines,
curves, triangles, rectangles, and others. The concept of shape
primitives is inspired by the VNC algorithm [1], in which only
rectangles are used to represent an image. Each rectangle can be
represented by its position information ( , , , ) and a color
tag. However, this representation is redundant for dots and lines.
For simplicity, only four types of shape primitives are used in
SPEC: isolated pixels, horizontal lines (one pixel high), vertical
lines (one pixel wide), and rectangles (with horizontal and ver-
tical sides). A shape primitive is defined to have the same inte-
rior color. It is possible that two shape primitives have the same
shape but different colors. Straight forward, a shape primitive
can be represented by a color tag and its position information,
i.e., ( , ) is for an isolated pixel, ( , , ) for a horizontal line,
( , , ) for a vertical line, and ( , , , ) for a rectangle.
Some English and Chinese characters in small fonts are shown
in Fig. 2. These characters are mainly composed of vertical and
horizontal lines. We can see that shape primitives can be used
to compactly represent the textual contents.

To encode pixels of text and graphics, a simple lossless coding
is designed to utilize the information of the extracted shape
primitives. Shape primitives can be efficiently encoded with
a shape-based coding, and other techniques like palette-based
coding, color table reuse, and LZW are also integrated.

There are two reasons that we use JPEG instead of the
state-of-the-art algorithm JPEG-2000 to encode pictorial
pixels. On one hand, as the algorithm is designed for real-time
compression, speed is the primary consideration. DCT-based
JPEG is several times faster than wavelet-based JPEG-2000.
On the other hand, JPEG is a block-based algorithm which is
compatible with our block-based technique.

The block diagram of the detailed SPEC algorithm is shown
in Fig. 3, and the details of segmentation and coding are de-
scribed in the following subsections.

B. Segmentation

The segmentation is a two-step procedure, including block
classification and refinement segmentation. The first step is
to classify 16 16 nonoverlapping blocks into text/graphics
blocks and picture blocks by thresholding the number of colors
in each block. Each block is scanned to count the number of
different colors. If the color number is more than a certain
threshold ( is used for SPEC), the block is classified
as picture block. Otherwise, it is classified as text/graphics
block. At the same time, 1-byte index data is generated for
text/graphics blocks. This reduces time to encode these blocks.
The underlying reason of thresholding the number of different
colors is that continuous-tone pictures generally have a large
number of different colors even in a small region, while text
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Fig. 3. Block diagram of the SPEC compression algorithm.

or graphics only have a small number of colors even in a large
region. The block classification based on counting different
colors can be extremely fast. Typical webpage images can be
done within 40 ms, and wallpaper images can be done within
20 ms. Fig. 4(a) shows a portion of the webpage web1, and
its text/graphics block image. Fig. 4(b) shows a portion of
the wallpaper wall1, and its picture block image. Most blocks
are correctly classified, except for those on the boundary of
text/graphics and pictures.

The above block classification is a coarse segmentation,
because classified picture blocks may contain text or graphics
pixels, and text/graphics blocks also may contain pictorial
pixels. Therefore, a refinement segmentation is followed to
extract text and graphics pixels from picture blocks to enhance
the results. Pictorial pixels in text/graphics blocks are not
segmented for two reasons. First, with a proper color number
threshold, the amount of pictorial pixels in text/graphics block
can be relatively small; thus, these pixels can be efficiently
coded with lossless methods. Second, for images with large
regions of text and graphics, the coarse segmentation is com-
putationally efficient. If the refinement segmentation is applied
to all blocks, it can be very time-consuming.

The procedure of extracting shape primitives of text/graphics
in a picture block is as follows. This procedure is similar to the
rectangle decomposition procedure in VNC. Each picture block
is scanned from left to right and from bottom to top, started

Fig. 4. Coarse block segmentation withT = 32. (a) A portion of the webpage
web1, and its text/graphics block image. (b) A portion of the wallpaper wall1,
and its picture block image.

Fig. 5. Shape primitive extraction. A region in one color can be decomposed
into a set of shape primitives, but there are many ways to do this decomposition.
For simplicity, only ABIJ and AEFM are compared. The winner is ABIJ because
it has a larger size than AEFM.

from left-bottom pixel. If the current pixel has been included in
a previously extracted shape primitive, the scanning procedure
skips it and goes to the next pixel. Otherwise, the current pixel
is set as a beginning point, and the scanning procedure then
searches rightward and upward to extract shape primitives.
There may be a rectangle, a horizontal line, a vertical line, or
at least an isolated pixel. An irregular region is represented by a
list of the four types of shape primitives, and the representation
is not unique. Fig. 5 shows such a region, where four rectangles,
i.e., AEFM, ADGL, ACHK, and ABIJ, are found in one color,
all starting from point A. To meet the speed requirement for our
real-time transmission, we only compare the widest horizontal
rectangle (or horizontal line) and the highest vertical rectangle
(or vertical line). A size-first strategy is used to accomplish this
task. For the case of Fig. 5, only the vertical rectangle ABIJ
is extracted because it has a larger size than the horizontal
rectangle AEFM, and AEFM does not exist after ABIJ has been
extracted. It is difficult to find the rectangle ADGL, though it
has the largest size. To find the horizontal rectangle AEFM, we
scan the row AE to get the width, and the rows above for the
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Fig. 6. Segmentation and reconstruction results of the wallpaper image wall1. (a) A portion of the original image. (b) Foreground layer of text/graphics pixels.
(c) Background layer of pictorial pixels, with holes filled with average colors of pictorial pixels in the block. White color represents text/graphics blocks.
(d) Reconstructed image (12.6:1 compression).

height. Similarly, to find the vertical rectangle ABIJ, we scan
the column AJ to obtain the height, and the rows between AJ
for the width.

Apparently, we must refine the shape primitives extracted
in above procedure to separate text/graphics pixels from pic-
torial pixels. Because shape primitives include isolated pixels,
every pixel in picture blocks may be misclassified into shape
primitive pixels. Moreover, for monotonous regions, such as
the blue sky in Fig. 10, several adjoining pixels may have the
same color.

Whether a shape primitive is classified into a text/graphics
class depends on its size and color. If its size is larger than
some threshold ( is used for SPEC), the shape
primitive is extracted as text/graphics pixels. Otherwise, the
color of this shape primitive is compared to a dynamic palette
of recent text/graphics colors. If an exact color match is found,
the shape primitive is taken as text/graphics. If a shape primitive
has a size larger than a threshold ( for SPEC), its
color is put into the dynamic color palette. The dynamic color
palette is implemented with a first-in first-out buffer. Because
color matching is frequently applied, we maintain the dynamic
palette with a small size for computational efficiency. In SPEC,
there are eight entries in the dynamic palette, and pure black
and pure white are considered as default text/graphics colors

Fig. 7. Lossless text/graphics coding. Three methods are compared to generate
minimal coding length: 1) all colors are shape-based coded, 2) all colors are
palette-based coded, 3) the most shape-complicated color is palette-based
coded, while other colors are shape-based coded. (a) 1) 89 bytes; 2) 128 bytes;
3) 104 bytes. (b) 1) 97 bytes; 2) 96 bytes; 3) 105 bytes. (c) 1) 139 bytes; 2) 128
bytes; 3) 122 bytes, where the cyan color is 1-bit palette-based coded.

for computer screen images. In other words, if a shape primitive
has pure black or pure white color, it is directly classified into
text/graphics.

There are several reasons for designing such a procedure to
detect shape primitives of text and graphics. First, most picto-
rial pixels are found to be isolated pixels, because there is little
possibility that several neighboring pictorial pixels have exactly
the same color. Even if this happens, the size of these picto-
rial pixels is usually small. Moreover, if the neighboring picto-
rial pixels have a large size, they are classified into text/graphics
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Fig. 8. Test images. (a) web1. (b) ppt1. (c) wall1.

Fig. 9. Segmentation results of web1. (a) Foreground layer separated by DjVu. (b) Background layer separated by DjVu. (c) Foreground layer separated by SPEC.
(d) Background layer separated by SPEC.

and can be still efficiently coded by lossless coding. Second, for
shape primitives of small sizes, we can make decision based on
most recent colors of text/graphics pixels. In document images
or computer-generated images, the color of textual and graph-
ical content generally has some coherence, and it is unusual that
text/graphics colors change frequently. Finally, this procedure is
computationally efficient.

This two step segmentation successfully segment the image
into two parts—text/graphics pixels and pictorial pixels,

where text/graphics pixels include all pixels of text/graphics
blocks and shape primitive pixels, and pictorial pixels are
the remaining pixels in picture blocks. Fig. 6(b) shows seg-
mented text/graphics pixels for Fig. 6(a), a portion of the
wallpaper wall1. The remaining pictorial pixels are shown in
Fig. 6(c). Most of the icon pixels are correctly classified into
text/graphics. It is difficult to detect the small portion of mis-
classified icon pixels, because their complicated color patterns
are very similar to ground-truth pictorial pixels.
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Fig. 10. Segmentation results of ppt1. (a) Foreground layer separated by DjVu. (b) Background layer separated by DjVu. (c) Foreground layer separated by SPEC.
(d) Background layer separated by SPEC.

C. Lossless Coding of Text/Graphics Pixels

Our lossless coding of text/graphics pixels is mainly based
on shape primitives, which creates a compact representation of
shape primitives of text and graphics. To compress text/graphics
blocks, shape primitives are extracted firstly. The extraction pro-
cedure is similar to that of picture blocks. In addition, in block
classification we can find the color with the largest size, and this
color is recorded as background color. For a text/graphics block,
the background color is usually segmented into interior text re-
gions and graphics regions. The background color is recorded,
and, thus, the coding of those background color pixels can be
skipped. The shape primitives in other colors are extracted from
text/graphics blocks, and all shape primitives extracted from
text/graphics blocks and picture blocks are losslessly coded.

A simple shape-based coding is used to represent shape prim-
itives. In a 16 16 block, 8-bit ( , ), 12-bit ( , , ), 12-bit ( ,

, ), and 16-bit ( , , , ) are used to represent isolated pixels,
horizontal lines, vertical lines, and rectangles, respectively. For
each color, we use a run-length encoding scheme to represent
the counts of four types of shape primitives.

Sometimes there are too many small shape primitives in a
complicated block. This makes shape-based coding inefficient.
Therefore, palette-based coding will be a good alternative.
Consider a two-color 16 16 block with color white as back-
ground and 100 isolated black pixels, shape-based coding needs
100 bytes to represent these isolated pixels, while palette-based
coding only needs 32 bytes to represent a 1-bit mask. For
multiple colors, palette-based coding uses a multiple-bit mask.
We choose one from the following three cases to achieve the
minimal code length: 1) all colors are shape-based coded, 2) all
colors are palette-based coded, 3) only the most shape-com-
plicated color is palette-based coded, while other colors are
shape-based coded. The most shape-complicated color is the
color that generates the maximum coding length when all
colors are shape-based coded.

Fig. 7 illustrates examples for the three cases. The block in
Fig. 7(a) is shape-based coded, and the block in Fig. 7(b) is
palette-based coded. The block in Fig. 7(c) is coded by a com-
bination of palette-based coding and shape-based coding. The
cyan color is the most shape-complicated color with 49 isolated
pixels. Using 1-bit palette-based coding, the cyan color is coded
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Fig. 11. Segmentation results of wall1. (a) Foreground layer separated by DjVu. (b) Background layer separated by DjVu. (c) Foreground layer separated by
SPEC. (d) Background layer separated by SPEC.

in 32 bytes, while shape-based coding needs 49 bytes to encode
the same information.

We apply a color table reuse technique to represent the colors
of shape primitives. Generally, most colors are the same in the
color tables of two consecutive blocks. If a color of the current
block is found to match the color table of the previous block, it
is represented by a 1-byte index. Otherwise, it is represented by
3-byte (R, G, B) format. Though we can construct a global dic-
tionary of colors, it is difficult to maintain the global dictionary.
Color matching is time-consuming in a large global dictionary
and, therefore, is not suitable for real time applications.

For each block, the lossless coding stream is organized as fol-
lowing. First, the color number and the color table are recorded.
Second, the encoding method is specified by the number of
colors being shape coded, the number of colors being palette-
based coded. If there is a background color, we record its index
in the block color table, and if there is a color being coded by
1-bit palette, we record its index, too. Then, shape primitives
in each color are represented by a combined shape-based and
palette-based coding algorithm. Finally, the above coded stream
is fed into a LZW coder, zlib [17], for further compression.

D. JPEG Coding of Pictorial Pixels

SPEC compresses pictorial pixels in picture blocks using a
simple JPEG coder [18]. In order to reduce ringing artifacts and
to achieve higher compression ratio, text/graphics pixels in the
picture block are removed before the JPEG coding. These pixels
are coded by the lossless algorithm. Actually, their values can
be arbitrarily chosen, but it would be better if these values are
similar to the neighbor pictorial pixels. This produces a smooth
picture block. We, therefore, fill in these holes with the average
color of pictorial pixels in the block.

IV. EXPERIMENTAL RESULTS

For our experiments, ten 800 600 true color computer
screen images are tested, including four webpages (web1,
web2, web3, and web4), four PowerPoint images (ppt1, ppt2,
ppt3, and ppt4), and two wallpaper images (wall1 and wall2).
There are a large number of Chinese characters in web1, web2,
ppt1, and ppt2. The PowerPoint and the wallpaper images
are very challenging to compress because English or Chinese
characters are directly drawn on background pictures. Three
test images (web1, ppt1, and wall1) are shown in Fig. 8.
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TABLE I
LOSSLESSLY COMPRESSED FILE SIZES (KILOBYTES)/ENCODING TIMES

IN MILLISECONDS FOR SEGMENTED FOREGROUND IMAGES

A. Segmentation

The three images in Fig. 8 are segmented by SPEC and DjVu
(DjVu Shop 2.0) for comparison. The segmentation results are
shown in Figs. 9–11. From Fig. 9, we notice that both algo-
rithms correctly classify text into foreground layers. The dif-
ference is that DjVu tends to classify most of the graphical
windows and the background colors into the background layer,
whereas SPEC only classify the complicated pictorial regions
as the background. It implies that SPEC can achieve higher fi-
delity in text/graphics regions than DjVu. The segmented image
in Fig. 9 is Fig. 8(a), which has a simple layout. For complex
images such as Fig. 8(b) and (c), SPEC clearly out-performs
DjVu by classifying most of the texts and graphical contents cor-
rectly. Compared with DjVu, this better segmentation directly
attributes to higher quality of SPEC compressed images. It can
be seen from Fig. 11(c) that there are some monotonous pic-
torial regions in the wallpaper misclassified as foreground by
SPEC. However, these misclassified regions can still be effi-
ciently coded by our lossless coding method.

B. Lossless Coding

First, we compare our lossless coding with LZW and
JPEG-LS for segmented foreground layers of the ten test
images. Table I shows the compressed file sizes and encoding
times. We can see that JPEG-LS spends the least encoding
times but achieves very poor compression ratios. SPEC and
LZW provide comparable compressions, but SPEC only spends
half of the encoding time that LZW needs. In comparison,
SPEC achieves a better trade-off between compression ratio
and encoding time.

Second, we test the lossless coding performance for bi-level
images. The SPEC algorithm is adapted to bi-level image inputs,
and it is compared with LZW, PNG, MH (CCITT G3), MMR
(CCITT G4), JBIG, and JBIG2 (LuraDocument LDF format,
and DjVu JB2). Two sets of bi-level images are tested. The
first set contains eight 800 600 computer screen images (text
only). The second set includes nine CCITT scanned document
images (available from [20]).

Compressed file sizes with the first test set are given in
Table II. SPEC and MMR achieve similar compression ratios.
LZW and PNG perform better than MH, MMR, and SPEC.
DjVu JB2 achieves the maximum compression ratios, but
it cannot guarantee lossless coding (even under the lossless

TABLE II
LOSSLESSLY COMPRESSED FILE SIZES (KILOBYTES)

OF EIGHT BI-LEVEL DOCUMENT IMAGES

TABLE III
LOSSLESSLY COMPRESSED FILE SIZES (KILOBYTES)

OF NINE CCITT BI-LEVEL IMAGES

TABLE IV
LOSSLESSLY ENCODING/DECODING TIMES IN MILLISECONDS

FOR NINE CCITT BI-LEVEL IMAGES

TABLE V
LOSSLESSLY ENCODINGLOSSLESSLY COMPRESSED FILE

SIZES (KILOBYTES) OF TEN COMPOUND IMAGES

option). In comparison with other lossless algorithms, JBIG
and LDF perform best. The average encoding and decoding
times of SPEC are 24 and 7 ms, respectively. The coding times
of other algorithms are not available.
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Fig. 12. PSNR plots for JPEG, JPEG 2000, DjVu, and SPEC. (a) web1. (b) ppt1. (c) wall1.

Fig. 13. Compression results of web2. (a) A portion of the original image. (b) JPEG, 127 KB (11.3:1 compression). (c) JPEG-2000, 73 KB (19.4:1 compression).
(d) DjVu, 84 KB (16.8:1 compression). (e) SPEC, 73 KB (19.4:1 compression).

Compression file sizes of nine CCITT images are given in
Table III. (Some results can be found on the websites of [20] and
[21] with slight difference). SPEC, LZW, and PNG achieve sim-

ilar compression ratios, which are far better than MH. MMR per-
forms better than SPEC, LZW, and PNG. In comparison, JBIG,
LDF, and DjVu give expected best results. Table IV lists the en-
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Fig. 14. Compression results of ppt1. (a) A portion of the original image. (b) JPEG, 100 KB (14.1:1 compression). (c) JPEG-2000, 77 KB (18.3:1 compression).
(d) DjVu, 99 KB (14.2:1 compression). (e) SPEC, 77 KB (18.3:1 compression).

Fig. 15. Compression results of wall1. (a) A portion of the original image. (b) JPEG, 90 KB (15.9:1 compression). (c) JPEG-2000, 112 KB (12.6:1 compression).
(d) DjVu, 97 KB (14.5:1 compression). (e) SPEC, 112 KB (12.6:1 compression).

coding and decoding times of SPEC, JBIG, and JBIG2, showing
that SPEC needs the least encoding and the least decoding time.

C. Computer Screen Image Compression

The proposed SPEC algorithm is compared with JPEG (IJG
JPEG 6b), JPEG 2000 (Jasper 1.6 [19]), DjVu (DjVu Shop 2.0),
and two lossless algorithms (VNC [1] and LZW zlib [17]) on a
1.3-GHz PM machine. In the settings of DjVu shop, we set the
document type as “color document.” The lossless mask and no
character thickening are chosen for higher quality.

Compressed file sizes of VNC, LZW, and lossless SPEC
(using integer reversible DCT and a quantization table of all
1s) are given in Table V. VNC achieves very poor compression
ratios. The lossless SPEC clearly out-performs LZW, especially
for wallpaper and PowerPoint images.

PSNR plots for JPEG, JPEG 2000, DjVu, and SPEC are
shown in Fig. 12. For the image web1, SPEC and DjVu clearly
out-perform traditional algorithms such as JPEG and JPEG
2000. SPEC provides 5- to 10-dB improvement over DjVu
and more than 20 dB over JPEG. Notice that the curve for
SPEC only varies from 1 to 1.5 dB, since most of the image
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TABLE VI
ENCODING/DECODING TIMES IN MILLISECONDS FOR TEN COMPOUND IMAGES

TABLE VII
ORIGINAL/COMPRESSED DATA SIZES (KILOBYTES)

FOR THE CODING METHODS IN SPEC

is losslessly coded. For the image ppt1, SPEC still serves as
an upper bound. At high bit rates, the performance of JPEG
2000 is very close to that of SPEC. DjVu is better than JPEG,
but inferior to JPEG 2000. For the image wall1, JPEG 2000 is
the best. At low bit rates, DjVu is better than SPEC. But SPEC
surpasses DjVu at high bit rates. Both DjVu and SPEC achieve
1 to 2 dB better than JPEG.

Figs. 13–15 compare the quality of the reconstructed images
compressed by SPEC with those by JPEG, JPEG 2000, and
DjVu at similar compression ratios. In terms of reconstructed
image quality, DjVu and SPEC perform much better than JPEG
and JPEG 2000, because JPEG and JPEG 2000 usually result in
annoying ringing artifacts around the edges of text characters.
Sometimes DjVu gives an impression that the text is blurred, as
characters filled with background picture colors. There are also
some missing and false pixels in DjVu coded characters due to
misclassification. For the two icons in Fig. 15, both DjVu and
SPEC achieve acceptable image quality, but some segmentation
errors are noticeable. Artifacts around the icons are less vis-
ible in the DjVu coded image, because DjVu uses wavelet-based
coding which has better smoothing effects.

Table VI lists the encoding and decoding times of the tested
algorithms. Typically, SPEC and JPEG spend 100 or 200 ms
to encode each test image, but JPEG 2000 needs around one
second. We cannot obtain the exact encoding/decoding time of
DjVu. Empirically, DjVu takes about 10 s to encode each image.

Table VII lists the detailed compression results for the coding
methods adopted in SPEC. Shape-based coding can achieve a
compression ratio from 10:1 to 20:1 for original pixel data.
Palette-based coding plays a secondary role by offering a small
coding gain. A savings between 30% and 40% is achieved by

LZW. Generally, JPEG achieves 10:1 to 30:1 compression ra-
tios. For typical 800 600 computer screen images, the SPEC
compressed files with acceptable quality have sizes less than
100 KB.

We conclude that: 1) for compound image compression,
SPEC outperforms traditional compression algorithms such as
JPEG and JPEG-2000; 2) SPEC achieves lower complexity and
higher quality than DjVu; and 3) the coding efficiency of SPEC
can be significantly improved if more sophisticated lossless
coding methods are employed.

V. CONCLUSION

We presented a compound image compression algorithm,
SPEC, for real-time computer screen image transmission. Two
main contributions of this work are: 1) an accurate segmentation
algorithm is developed to separate text/graphics from pictures
and 2) a lossless coding method is designed for text/graphics
compression. Experimental results demonstrate that SPEC is an
algorithm of low complexity. It also provides excellent visual
quality and competitive compression ratio. Our future work
is to improve the accuracy of the segmentation and efficiency
of the lossless coding. It is also possible to modify SPEC for
compression of scanned document images.
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