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• An extremely small data set with 279 im-
ages is built as a more realistic bench-
mark.

• A small-data learning method is proposed 
to turn the problem into detection task.

• Experimental results demonstrate the ef-
fectiveness of our method (73.00% accu-
racy).
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Objectives: Laryngoscopy is a medical procedure for obtaining a view of the human larynx. It is 
challenging for clinicians to distinguish laryngeal neoplasms by human visual observation. Recent deep 
learning methods can assist clinicians in improving the accuracy of distinguishing. However, existed 
methods are often trained on large-scale private datasets, while other researchers and hospitals can 
neither access these private datasets nor afford to build such large-scale datasets. In this paper, we focus 
on identifying laryngeal neoplasms under the “small data” regime, which is more important for many 
small hospitals to investigate deep learning models for diagnosis.
Material and methods: We build an extremely small dataset consisting of 279 laryngoscopic images of 
different categories. We found that traditional deep learning models for image classification cannot 
achieve satisfactory performance for small data, due to the great variability of recording laryngoscopic 
images and the small area of the neoplasms. To address these difficulties, we propose to employ object 
detection methods for this small data problem. Concretely, a Faster R-CNN is implemented here, which 
combines the DropBlock regularization technique to alleviate overfitting additionally.
Results: Compared to previous methods, our model is more robust to overfitting and can predict 
the location and category of detected neoplasms simultaneously. Our method achieves 73.00% overall 
accuracy, which is higher than the average of clinicians (65.05%) and the recent state-of-the-art 
classification method (65.00%).
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Conclusion: The proposed method shows great ability to detect both the category and location of 
neoplasms and can be served as a screening tool to help the final decisions of clinicians.

© 2023 AGBM. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

In the clinical practice of Otolaryngology, the laryngoscope is 
the most common and important piece of equipment for the exam-
ination the larynx structure. Through a laryngoscope, rigid or flex-
ible, lesion of larynx could be found by ENT (Ear, Nose and Throat) 
practitioner. Doctors’ judgment of laryngoscope images depends on 
clinical experience, and doctors of different seniority from different 
levels of hospitals may draw different conclusions from the same 
laryngoscope images. If there exists a reliable automated system 
for screening laryngoscopic images, it can give preliminary recom-
mendations that can assist doctors in their interpretation of such 
images.

Artificial Intelligence (AI) has its technical advantages in im-
age recognition, which has been shown in imaging diagnosis of 
skin cancer [1]. With the updating of technology, objective analy-
sis of laryngoscope images is in full swing. Research of Du et al. 
[2] applies Artificial Neural Network (ANN) on laryngoscope im-
ages to determine the validity of color and texture abnormalities 
in LPR (Laryngopharyngeal Reflux) system. The disadvantage with 
this method is that using only two features could omit more sub-
stantial information contained in the image.

In recent years, a great number of publications apply computer 
vision techniques to medical imagery such as radiology, pathol-
ogy, ophthalmology and dermatology, which is benefited by the 
growing availability of highly structured images [3]. For example, 
EchoNet [4] is proposed to recognize cardiac structures and predict 
the systemic phenotypes which are difficult for human interpreta-
tion. For skin images with pathology, DermGAN [5] leveraged Gen-
erative Adversarial Nets (GANs) [6] for synthesizing clinical images 
with skin conditions as data augmentation. Convolutional Neural 
Network (CNN) is employed in [7] for automated detection of di-
abetic retinopathy and diabetic macular edema in retinal fundus 
photographs.

Nevertheless, these works are often supported by extensive 
medical image collections which are easily accessible. For exam-
ple, CT images will be automatically preserved in digit form, hence 
researchers don’t have to consciously collect and build the dataset. 
On the other hand, there are some large-scale public datasets such 
as MURA of bone X-rays [8] and LUNA16 [9] of lung nodules which 
can be efficiently used for training and evaluation.

While for laryngoscope images, to the best of our knowledge, 
no public dataset is available. It’s challenging to build a dataset 
from scratch. Firstly, the number of patients with throat disease is 
not as large as other diseases, and only a small number of patients 
are willing to take laryngoscopy images. Secondly, laryngoscope 
images are not saved in digit form for many hospitals in previous 
years, which makes it hard to collect enough data. Thirdly, privacy 
policy further limits the amount of related metadata. Fourthly, the 
annotations can only be made by senior physicians to ensure the 
correctness of the label, which increases the cost of annotation.

There’re few works toward larynx image recognition. For exam-
ple, Yao et al. [10] employ a CNN for selecting informative frames 
from laryngoscopic videos. However, their method is not able to 
predict the category of neoplasms. The most related work to ours 
is [11], where a widely-used ResNet-101 model [12] is pretrained 
on the ImageNet natural image dataset and transferred to clas-
sify laryngoscope images. To be more detailed, they built a dataset 
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of 24677 consecutive laryngoscope images in total from 9231 pa-
tients. This dataset is further divided into three parts: a training 
set of 14340 images, a validation set of 5093 images, and a test 
set of 5234 images. There are five categories in their dataset: Nor-
mal, Vocal nodule, Leukoplakia, Benign and Malignancy. Using the 
ResNet-101 model, they achieved an overall accuracy of 96.24%, a 
sensitivity of 99.02% and a specificity of 99.36% on the test set.

However, we argue there exist several limitations in the method 
of [11]. First, their high accuracy was achieved on a large train-
ing set (14340 images from 5250 patients) collected over six years 
(from 2012 to 2017). Currently, their dataset cannot be made 
publicly available. Hence, other researchers must build their own 
datasets from scratch, possibly with a small number of laryn-
goscope images. It would be almost impossible for many small 
hospitals to build dataset of such large-scale from scratch. It is 
quite questionable whether the transferred ResNet-101 model can 
achieve satisfactory performance on these small datasets. Even if 
they released the model, it cannot be directly employed by oth-
ers since the different laryngoscope scanning tools can cause huge 
differences in the domain of images. Second, their image classi-
fication model can only report the category of the whole image, 
lacking interpretability when an otolaryngologist attempts to ex-
amine the results of the computer-aided diagnosis system.

To address these problems, we propose a diagnosis method for 
laryngoscope images under small-scale data. Recently learning on 
small data [13] has attracted much attentions due to the expen-
sive cost of annotation and training, the wide applicability of real 
scenarios, and the attempt to pursue Artificial General Intelligence 
(AGI). For this small data problem, we implement an object detec-
tion model rather than conventional image classification methods. 
We argue that image classification can not focus on the small area 
of the interested region in a laryngoscopic image, particularly in 
the setting of small data. In this way, we can simultaneously pre-
dict the category and detect the region of neoplasms from the 
input RGB images. To learn from small data, we propose to use 
DropBlock as the regularization to prevent overfitting. To demon-
strate the effectiveness of our method, we built a dataset of 279 
images from 279 patients (one image per patient), which is much 
smaller than [11]. As shown in Fig. 1, our dataset contains five 
categories that are different from [11]: normal, cyst, nodules, la-
ryngeal carcinoma, and precancerous lesions. We use a rectangular 
bounding box as the location annotation of the neoplasm (if exists) 
and the type of neoplasm as the category label.

In summary, our contributions are as follows:

1. A extremely small dataset with 279 images from 279 patients 
is built as a more realistic benchmark for laryngology prac-
tices.

2. A method based on object detection is proposed. By outputting 
both the category label and the location of pathology, our re-
sults are more interpretable than other black-box image clas-
sification methods which offer only the category.

3. Experimental results demonstrate the effectiveness of our 
method. Even on a small-scale dataset, our method achieves 
73.00% overall accuracy, which outperforms clinical visual as-
sessments (CVAs) and state-of-the-art automated method.
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Fig. 1. Some examples of our dataset.

Fig. 2. The pipeline of our method. The input is an RGB image, which is first fed into a backbone CNN to extract image features. Then, a Region Proposal Net (RPN) generates 
a set of region proposals, which are the potential regions that may contain interested objects. Finally, an R-CNN head takes both the image features and region proposals to 
give a category prediction (with a confidence score) and the location of a single bounding box.
2. Materials and methods

2.1. Neoplasm detection based on Faster R-CNN

Our method is mainly based on Faster R-CNN [14], one of the 
most widely used two-stage models for object detection. Compared 
to classification model [11], Faster R-CNN is capable of predicting 
the location and category of neoplasms simultaneously. Besides, 
Faster R-CNN is more lightweight than state-of-the-art detection 
methods [15,16] and can prevent overfitting to small-scale data. 
Fig. 2 illustrates the three parts of Faster R-CNN: a backbone mod-
ule, a Region Proposal Network (RPN), and an R-CNN detector 
module.

The backbone module is used to extract visual features from 
the input images. Modern detectors choose various backbones for 
different purposes. For example, large models like ResNeST [17]
are designed for higher performance at the expense of heavy 
computation. For this task, we choose ResNet-50 (with 50 lay-
ers in the model) pre-trained on the ImageNet [18] dataset as 
the backbone to reduce computation overhead and alleviate over-
fitting. Since the amounts of training data are extremely small, 
we use the DropBlock [19] regularization technique to alleviate 
the overfitting problem. Given the block_size and γ as a hyper-
parameter, DropBlock first generates a sample mask M (with size 
block_size × block_size) at each pixel (i, j) with a Bernoulli dis-
tribution, i.e. M(i, j) ∈ Bernoulli(γ ). Then, for each zero position 
M(i, j) , we create a spatial mask of a square with the center be-
ing (i, j) and shape being block_size × block_size, and setting all 
the values of the feature map A in the square as zero. In this way, 
multiple results of the feature map can be obtained by sampling 
multiple times, which can prevent the network from overfitting to 
some specified patterns.

Since object detection is a rather difficult problem, Faster R-
CNN partitions the whole optimization process into two stages. 
The first stage is a Region Proposal Net (RPN), which takes the 
feature maps and generates thousands of “region proposals”. These 
proposals represent the most likely areas that may contain objects 
3

of interest. The second stage is an R-CNN Head, which uses the 
feature maps to predict the category label and to yield more ac-
curate locations on the basis of proposals. For optimization of the 
RPN, the shapes of region proposals are predefined to reduce the 
search space, which is also called “anchors”. In [14], the scale of 
anchors is set as 8 to handle the case that some objects may oc-
cupy the whole canvas in nature object detection. Since the sizes 
of neoplasms in laryngoscopic images are rather small, we set the 
scale of anchors to 3 in order to achieve better performance. The 
loss function of RPN is composed of two parts: binary classifica-
tion loss and anchor regression loss, where binary cross entropy 
and L1 loss are utilized respectively.

The R-CNN head is composed of two fully convolution branches: 
a classification branch and a regression branch. With the region 
proposals generated by RPN, the R-CNN Head first uses RoI (Re-
gion of Interest) Align operation to registrate the feature map of 
the whole image onto the region of proposals. Then for each re-
gion proposal, the classification branch yields the probability (or 
confidence) of four categories (except the normal) with a soft-
max operator, while the regression branch creates a bounding box. 
Only one bounding box with the highest confidence is kept for 
each image, assuming that there is only one of RoI in the exam-
ined laryngoscope image. Finally, if its confidence is lower than a 
threshold β , the bounding box will be discarded and the image 
is classified as the normal category (without any bounding box). 
In our experiments, the threshold β is empirically set as 0.3. For 
training R-CNN head, we use cross entropy for the classification 
branch and L1 loss for regression branch.

2.2. Implementation details

Due to the limitation of this extremely small data set, we use 
5-fold cross-validation rather than a fixed partition of the training 
set and test set. Since the original images are of different sizes in 
pixels, we first resize them to the fixed 640 × 640 pixel resolution, 
which is widely used in object detection tasks. Then, we use a 
horizontal flip with a probability of 0.5 for data augmentation.
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Fig. 3. Confusion matrix of (a) out method; (b) the classification model in [11]; (c) average of clinicians under Setting A.
Table 1
Amount of examples in each category un-
der different settings.

Category Setting A Setting B

Carcinoma 49 20
Precancerosis 40 20
Cyst 62 20
Nodules 63 20
Normal 65 20

We tune hyper-parameters using the cross-validation method. 
The batch size is 2 and the total number of epochs in training is 
set as 36. The initial learning rate is set as 0.02, which decays by 
a factor of 0.1 at the 24-th and 33-th epochs. As for the optimizer, 
we chose stochastic gradient descent (SGD) with a momentum of 
0.9 and weight decay of 0.0001. All code is implemented based on 
the PyTorch deep learning framework and the model is trained and 
tested with a single NVIDIA 2080Ti GPU.

3. Results

Since the dataset and training code of [11] are not open-source, 
for demonstrating the effectiveness of our method, we chose 100 
samples from the entire dataset and collected the classification 
results from 20 clinicians of Peking University Third Hospital, Bei-
jing Xiyuan Hospital, and Inner Mongolia Forestry General Hospital. 
All doctors have completed 3 years of residency training program. 
One-third of them are doctors under 10 years’ experience, one-
third of them are non-laryngeal specialty doctors for more than 
10 years, and the remainings are laryngeal specialists with more 
than 10 years’ experience. As above, the dataset is composed of 
179 images with annotation (Dx = {x1, x2, · · · , x179}) and 100 im-
ages with both annotation and diagnostic results from 20 clinicians 
(D y = {y1, y2, · · · , y100}). We designed two different training set-
tings:

• Setting A: 5-fold cross-validation over D y . For example, at 
the first round, Dx + {y21, y22, · · · , y100} are used for train-
ing, {y1, y2, · · · , y20} are used for testing.

• Setting B: 5-fold cross-validation over the entire dataset. For 
example, at the first round, {x37, x38, · · · , x179} +{y21, y22, · · · ,

y100} are used for training, the remainings are used for testing. 
The category distribution is shown as Table 1.

Setting A is designed for comparing our method with clinicians, 
while Setting B is mainly for comparing with [11]. Unless specified, 
Setting A is the default setting of experiments.

The specificity, sensitivity of each category and the overall ac-
curacy over the whole dataset are employed as metrics, which are 
defined as follows:

speci f ityi = T Ni
, (1)
E − Ei

4

sensitivityi = T Pi

Ei
, (2)

overall_accuracy ==
∑m

i=1 T Pi

E
, (3)

where i is the category index and m = 5 is the total number of 
categories. The variables T Pi and T Ni refer to the number of true 
positive and true negative samples, respectively, for each category 
i. Ei is the number of samples for each category and E = ∑m

i=1 Ei
is the total number of samples in the test set.

3.1. Comparing to the classification network and clinicians

We implemented their method and trained it on our dataset 
to compare with them. We also tried to directly use the trained 
parameters of [11] to yield predictions on our dataset. It obtained 
an average accuracy of 56.67% for carcinoma, nodules and normal 
(the precancerosis and cyst were not involved in their dataset). The 
result was worse than expected, which may be contributed to the 
domain difference of our dataset. For a more fair comparison, we 
train and evaluate their model from scratch on our dataset.

The evaluation results of our method, the ResNet-101 model 
used in [11], and human clinics are shown in Table 2 and Table 3. 
Under setting A, our method achieves an overall accuracy of 73.00% 
on the proposed dataset, which is better than the method of [11]
(65.00%) and clinicians (65.05%). Besides, our method has the high-
est average specificity and sensitivity. The confusion matrix and 
ROC curve are given by Fig. 3 and Fig. 4 respectively.

For human experts, it tends to be challenging to distinguish 
carcinoma (our AUC=0.8962) from precancerosis (our AUC=0.8413) 
(see Fig. 3(c)) for their high visual similarity. For our method, the 
sensitivity and specificity are 31.50% and 4.61% higher than the 
clinicians because the deep convolution network is able to capture 
the minor differences between them that a human cannot. Our 
method also achieves the best performance in the cyst category 
(our AUC=0.8556). However, the network does not outperform in 
the nodules category (our AUC=0.7819), which may be attributed 
to the limited data. Nodules tend to be tiny lesion and the network 
may require more samples to learn the difference. The specificity 
of normal images (our AUC=0.9787) is lower than experts while 
the sensitivity is higher, which is highly related to the hyper-
parameter β . If we use a bigger value for β , the precision will be 
increased and recall will be reduced. The used β = 0.3 is empiri-
cally set. Since the baseline method cannot predict the regions of 
lesions, direct numerical comparison on the performance of detec-
tion is not available. To illustrate the effectiveness of our method, 
we give some illustrations in Fig. 5.

Our method also achieves higher average sensitivity and speci-
ficity compared to [11] under both setting A and setting B. As 
for nodules, the sensitivity of our method is significantly lower 
than [11], since our method contains both detection (RPN) and 
classification (R-CNN Head). Tiny lesion like nodules is difficult to 
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Table 2
The results of our method (Setting A, single-run), classification method [11] (Setting A, single-run) and 20 different clinicians. Bold indicates the best result of each category. 
Since the number of samples for each category is the same, the overall accuracy is numerically equal to average sensitivity.

Performer Metric Carcinoma Precancerosis Cyst Nodules Normal Average

Our method Sensitivity (%) 80.00 50.00 80.00 55.00 100.00 73.00
Specificity (%) 92.50 97.50 90.00 95.00 91.25 93.25
Overall Accuracy (%) - - - - - 73.00

Classification method [11] Sensitivity (%) 70.00 40.00 70.00 45.00 100.00 65.00
Specificity (%) 91.25 87.50 88.75 91.25 97.50 91.25
Overall Accuracy (%) - - - - - 65.00

Average of clinicians Sensitivity (%) 48.50 60.00 48.25 72.25 96.25 65.05
Specificity (%) 87.89 89.46 87.97 92.54 99.05 91.00
Overall Accuracy (%) - - - - - 65.05

Table 3
The results of our method (Setting B, single-run), classification method [11] (Setting B, single-run). Bold indicates the best result of each category.

Performer Metric Carcinoma Precancerosis Cyst Nodules Normal Average

Our method Sensitivity (%) 67.35 40.00 69.35 71.43 95.38 68.70
Specificity (%) 97.83 95.40 92.17 91.20 86.92 92.70
Overall Accuracy (%) - - - - - 71.32

Classification method [11] Sensitivity (%) 69.39 12.50 66.13 80.95 90.77 63.95
Specificity (%) 91.30 98.33 92.17 85.19 92.52 91.90
Overall Accuracy (%) - - - - - 68.10

Fig. 4. The Receiver operating characteristics (ROC) curves of each category. The threshold of the output for our method and [11] are varied in the interval 0 to 1 to generate 
each threshold point. AUC is the area under the ROC curve.
detection state. However, our method obtains significantly higher 
sensitivity on precancerosis, cyst, and normal categories. It is addi-
tionally worth mentioning that our method is able to predict the 
exact location of neoplasm while the method of [11] cannot.

3.2. Comparing to the other detectors

To demonstrate the effectiveness of our method, we compare 
the results of Faster R-CNN and other state-of-the-art models of 
5

object detection – Cascade R-CNN [16], ResNeSt [17], NAS-FPN 
[20], and Double Head [21]. Cascade R-CNN consists of a se-
quence of detectors trained with increasing Intersection over Union 
(IoU) thresholds, to be sequentially more selective against close 
false positives. ResNeSt is the extension of ResNet, which applies 
channel-wise attention on different network branches to leverage 
their success in capturing cross-feature interactions and learning 
diverse representations. NAS-FPN was discovered using Neural Ar-
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Fig. 5. Some examples of the results with each category shown in a column. The green bounding boxes are the ground truth and the blue bounding boxes are the prediction 
of our model. For clarity, only the bounding box with the highest confidence score is shown in each image. The two images in the last column are normal, so no ground 
truth is annotated. Our model succeeds to filter all proposals and no prediction is generated for the normal category.

Table 4
The results (5-fold cross validation, single-run) of our method and other state-of-the-art object detectors. Bold indicates the best result. Since the number of samples for each 
category is the same, the overall accuracy is numerically equal to average sensitivity.

Method Cascade R-CNN ResNeSt NAS-FPN Double Head Faster R-CNN (ours)

Average Sensitivity (%) 66.00 59.00 65.00 67.00 73.00
Average Specificity (%) 91.50 89.75 91.25 91.75 93.25
Overall Accuracy (%) 66.00 59.00 65.00 67.00 73.00
chitecture Search, and it consists of a combination of top-down 
and bottom-up connections to fuse features across scales. Double 
Head has a fully connected head focusing on classification and a 
convolution head for bounding box regression in order to address 
the imbalance problem of a traditional R-CNN head. The experi-
mental results of these methods are given in Table 4. (For simplifi-
cation, only the average sensitivity and specificity of all categories 
are listed.) It is clear that our method achieves the best results 
among these models. The main reason for this may be attributed 
to the tiny scale of our dataset. Using a complicated model can re-
sult in an overfitting problem, especially for a dataset with only 
279 samples.

4. Discussion

Experience and expertise can influence doctors’ judgment of 
laryngoscope images. For doctors of different hospitals and se-
niority, the accuracy of the judgment of laryngoscope images 
varies. Balanced sensitivity and specificity are characteristic of 
good screening methods. Hence, the method obtained in this study 
could serve as a screening tool to help inexperienced doctors di-
agnose correctly. According to the results of our study, the image 
processing methods have relatively high sensitivity and specificity 
to the recognition of laryngoscope images of various vocal cord le-
sions.

Computer-aided methods for laryngeal disease diagnosis have 
not been widely used in real deployments due to the limitation of 
data. Ren et al. [11] proposed a CNN-based classification method 
and a large-scale dataset that contains 24667 samples in total. Us-
ing this dataset, they achieved remarkable results. However, their 
model can only predict the category of the input image, which 
gives the results limited applicability. Additionally, it is an inten-
sive task to build such a dataset, which may hinder the usage of a 
computer-aided method of diagnosis in other hospitals. To address 
these issues, we propose an effective method based on Faster R-
CNN. Our method can not only predict the category of neoplasms 
but also generate a bounding box to indicate its location. More im-
portantly, the proposed method is a more practicable method for 
many hospitals that can not afford to build a large-scale dataset 
like [11]. The results produced on the small-scale dataset demon-
strate the effectiveness and robustness of our method.
6

5. Significance

The significance of this research in the actual clinical setting 
can be concluded by four points:

1. The advantage of rapid diagnosis. Employing the deep learning 
method saves time to develop a perioperative plan for diseases 
such as laryngeal cancer and precancerous lesions, and prepare 
more fully and rationally.

2. The increased accuracy of identifying benign hypertrophic le-
sions of the vocal cords helps to accurately remove lesions 
under laryngeal microsurgery and maximize the preservation 
of normal mucosa, thereby improving vocalization. Especially 
for vocal cord cysts, the surgical method is different from the 
vocal cord polyps, and complete removal of the cyst can effec-
tively reduce postoperative recurrence.

3. Help young doctors or non-laryngology-specialist and primary 
doctors to improve the accuracy of diagnosis of vocal cord le-
sions, so as to achieve the homogenization level of diagnosis.

4. It has a positive effect in assisting in the diagnosis of vocal 
cord lesions in remote consultation. In the condition of the 
COVID-19 pandemic, telemedicine is an option that benefits 
both doctors and patients.

6. Conclusion

In this paper, a computer-aided method is proposed for la-
ryngeal disease diagnosis with small data. Previously developed 
computer-aided diagnosis methods have been rarely used in real 
settings since they only generate a prediction for the whole im-
age and cannot tell the accurate location of disease. This makes 
the prediction results unreliable for clinicians. Besides, they rely 
on large-scale dataset and cannot be easily transferred, which hin-
der small hospitals to utilize them in diagnosis. To address these 
issues, we adopt the object detection model rather than image 
classification model so that both the category label and location of 
disease can be predicted simultaneously. Besides, we employ Drop-
Block technical to learn from small data. The clinicians can then 
easily further validate the accuracy of the prediction. To demon-
strate the effectiveness of our model, we collected 279 samples 
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from 279 different patients to build a small dataset. Our method 
achieves an overall accuracy of 73.00%, which is better than the 
method of [11] as well as human experts.
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